SMAP soil moisture improves global evapotranspiration

Abstract Accurate estimation of global evapotranspiration (ET) is essential to understand water cycle and land-atmosphere feedbacks in the Earth system. Satellite-driven ET models provide global estimates, but many of the ET algorithms have been designed independently of soil moisture observations. As water for ET is sourced from the soil, incorporating soil moisture into global remote sensing algorithms of ET should, in theory, improve performance, especially in water-limited regions. This paper presents an update to the widely-used Priestley Taylor-Jet Propulsion Laboratory (PT-JPL) ET algorithm to incorporate spatially explicit daily surface soil moisture control on soil evaporation and canopy transpiration. The updated algorithm is evaluated using 14 AmeriFlux eddy covariance towers co-located with COsmic-ray Soil Moisture Observing System (COSMOS) soil moisture observations. The new PT-JPLSM model shows reduced errors and increased explanation of variance, with the greatest improvements in water-limited regions. Soil moisture incorporation into soil evaporation improves ET estimates by reducing bias and RMSE by 29.9% and 22.7% respectively, while soil moisture incorporation into transpiration improves ET estimates by reducing bias by 30.2%, RMSE by 16.9%. We apply the algorithm globally using soil moisture observations from the Soil Moisture Active Passive Mission (SMAP). These new global estimates of ET show reduced error at finer spatial resolutions and provide a rich dataset to evaluate land surface and climate models, vegetation response to changes in water availability and environmental conditions, and anthropogenic perturbations to the water cycle.

[1]  J. Norman,et al.  Correcting eddy-covariance flux underestimates over a grassland , 2000 .

[2]  T. Jackson,et al.  Field observations of soil moisture variability across scales , 2008 .

[3]  S. Seneviratne,et al.  Recent decline in the global land evapotranspiration trend due to limited moisture supply , 2010, Nature.

[4]  Yi Y. Liu,et al.  Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle , 2014, Nature.

[5]  Wade T. Crow,et al.  The Impact of Vertical Measurement Depth on the Information Content of Soil Moisture for Latent Heat Flux Estimation , 2016 .

[6]  D. Hollinger AmeriFlux US-Ho1 Howland Forest (main tower) , 2016 .

[7]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[8]  Andrew T. Wittenberg,et al.  El Niño and our future climate: where do we stand? , 2010 .

[9]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[10]  Hiroko Kato Beaudoing,et al.  Estimating evapotranspiration using an observation based terrestrial water budget , 2011 .

[11]  Philippe Richaume,et al.  SMOS Radio Frequency Interference Scenario: Status and Actions Taken to Improve the RFI Environment in the 1400–1427-MHz Passive Band , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Yann Kerr,et al.  Soil Moisture , 1922, Botanical Gazette.

[13]  R. Scott AmeriFlux US-Wkg Walnut Gulch Kendall Grasslands , 2016 .

[14]  J. Norman,et al.  Correcting eddy-covariance flux underestimates over a grassland , 2000 .

[15]  Eric F. Wood,et al.  Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches , 2011 .

[16]  Wade T. Crow,et al.  Validation and scaling of soil moisture in a semi-arid environment: SMAP validation experiment 2015 (SMAPVEX15) , 2017 .

[17]  Joel T. Johnson,et al.  Soil Moisture Active Passive (SMAP) microwave radiometer radio-frequency interference (RFI) mitigation: Algorithm updates and performance assessment , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[18]  Dominique Carrer,et al.  Parameter optimisation for a better representation of drought by LSMs: inverse modelling vs. sequential data assimilation , 2017 .

[19]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[20]  Maosheng Zhao,et al.  Improvements to a MODIS global terrestrial evapotranspiration algorithm , 2011 .

[21]  M. Mccabe,et al.  Multi-site evaluation of terrestrial evaporation models using FLUXNET data , 2014 .

[22]  P. Blanken,et al.  The increasing importance of atmospheric demand for ecosystem water and carbon fluxes , 2016 .

[23]  B. Walker,et al.  Interactions of woody and herbaceous vegetation in a southern African Savanna , 1985 .

[24]  D. Hollinger,et al.  Uncertainty in eddy covariance measurements and its application to physiological models. , 2005, Tree physiology.

[25]  A. Desai AmeriFlux US-PFa Park Falls/WLEF , 2016 .

[26]  N. McDowell,et al.  Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality1[W] , 2011, Plant Physiology.

[27]  F. Pugnaire,et al.  Rooting depth and soil moisture control Mediterranean woody seedling survival during drought , 2007 .

[28]  Muddu Sekhar,et al.  Validation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron Probes , 2017, Remote. Sens..

[29]  H. A. Mooney,et al.  Maximum rooting depth of vegetation types at the global scale , 1996, Oecologia.

[30]  Diego G. Miralles,et al.  Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation , 2014 .

[31]  C. Tucker,et al.  Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999 , 2003, Science.

[32]  R. Scott AmeriFlux US-SRM Santa Rita Mesquite , 2016 .

[33]  Martha C. Anderson,et al.  An Intercomparison of Drought Indicators Based on Thermal Remote Sensing and NLDAS-2 Simulations with U.S. Drought Monitor Classifications , 2013 .

[34]  Markus Reichstein,et al.  Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis , 2013 .

[35]  D. Baldocchi AmeriFlux US-Var Vaira Ranch- Ione , 2016 .

[36]  Matthew F. McCabe,et al.  Partitioning of evapotranspiration in remote sensing-based models , 2018, Agricultural and Forest Meteorology.

[37]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[38]  R. Leuning,et al.  Evaporation and canopy characteristics of coniferous forests and grasslands , 1993, Oecologia.

[39]  K. Novick,et al.  AmeriFlux US-MMS Morgan Monroe State Forest , 2016 .

[40]  Martha C. Anderson,et al.  The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources , 2017 .

[41]  Carlos Jimenez,et al.  On Uncertainty in Global Terrestrial Evapotranspiration Estimates from Choice of Input Forcing Datasets , 2015 .

[42]  John M. Baker,et al.  AmeriFlux US-Ro1 Rosemount- G21 , 2016 .

[43]  A. Al Bitar,et al.  Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation , 2016 .

[44]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[45]  B. Amiro Footprint climatologies for evapotranspiration in a boreal catchment , 1998 .

[46]  Adam J. Purdy,et al.  Ground heat flux: An analytical review of 6 models evaluated at 88 sites and globally , 2016 .

[47]  Kuolin Hsu,et al.  How significant is the impact of irrigation on the local hydroclimate in California’s Central Valley? Comparison of model results with ground and remote‐sensing data , 2011 .

[48]  Christopher Ruf,et al.  Radio-Frequency Interference Mitigation for the Soil Moisture Active Passive Microwave Radiometer , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Joel T. Johnson,et al.  SMAP L-Band Microwave Radiometer: RFI Mitigation Prelaunch Analysis and First Year On-Orbit Observations , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Bev Law AmeriFlux US-Me2 Metolius-intermediate aged ponderosa pine , 2016 .

[51]  E. Youngs,et al.  Fundamentals of Soil Physics. , 1982 .

[52]  T. A. Black,et al.  Assessing Tower Flux Footprint Climatology and Scaling Between Remotely Sensed and Eddy Covariance Measurements , 2009 .

[53]  Hans Peter Schmid,et al.  Heat storage and energy balance fluxes for a temperate deciduous forest , 2004 .

[54]  R. Scott,et al.  Measuring soil moisture content non‐invasively at intermediate spatial scale using cosmic‐ray neutrons , 2008 .

[55]  Matthew F. McCabe,et al.  The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms , 2015 .

[56]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.

[57]  Kathy Steppe,et al.  SAPFLUXNET: towards a global database of sap flow measurements. , 2016, Tree physiology.

[58]  James S. Famiglietti,et al.  Irrigation in California's Central Valley strengthens the southwestern U.S. water cycle , 2013 .

[59]  K. Didan,et al.  MOD13C1 MODIS/Terra Vegetation Indices 16-Day L3 Global 0.05Deg CMG V006 , 2015 .

[60]  J. Randerson,et al.  Continental-scale net radiation and evapotranspiration estimated using MODIS satellite observations , 2011 .

[61]  R. B. Jackson,et al.  Ecosystem rooting depth determined with caves and DNA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Diego G. Miralles,et al.  Magnitude and variability of land evaporation and its components at the global scale , 2011 .

[63]  L. Gu AmeriFlux US-MOz Missouri Ozark Site , 2016 .

[64]  R.A.M. de Jeu,et al.  Soil moisture‐temperature coupling: A multiscale observational analysis , 2012 .

[65]  R. Dickinson,et al.  A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability , 2011 .

[66]  R. B. Jackson,et al.  Biophysical considerations in forestry for climate protection , 2011 .

[67]  N. Verhoest,et al.  GLEAM v3: satellite-based land evaporation and root-zone soil moisture , 2016 .

[68]  Ying Fan,et al.  Hydrologic regulation of plant rooting depth , 2017, Proceedings of the National Academy of Sciences.

[69]  T. An,et al.  Radio Frequency Interference Mitigation , 2017, 1711.01978.

[70]  Kyle Hilburn,et al.  Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge , 2010, Proceedings of the National Academy of Sciences.

[71]  Pierre Gentine,et al.  Tall Amazonian forests are less sensitive to precipitation variability , 2018, Nature Geoscience.

[72]  Dongryeol Ryu,et al.  Characterization of footprint‐scale surface soil moisture variability using Gaussian and beta distribution functions during the Southern Great Plains 1997 (SGP97) hydrology experiment , 2005 .

[73]  J. Wolf,et al.  WOFOST: a simulation model of crop production. , 1989 .

[74]  T. Huntington Evidence for intensification of the global water cycle: Review and synthesis , 2006 .

[75]  K. G. McNaughton,et al.  Stomatal Control of Transpiration: Scaling Up from Leaf to Region , 1986 .

[76]  N. McDowell,et al.  Numerical Terradynamic Simulation Group 1-2013 A Remotely Sensed Global Terrestrial Drought Severity Index , 2017 .

[77]  W. J. Shuttleworth,et al.  COSMOS: the COsmic-ray Soil Moisture Observing System , 2012 .

[78]  David M. Lawrence,et al.  Evaluating the strength of the land–atmosphere moisture feedback in Earth system models using satellite observations , 2016 .

[79]  R. Scott AmeriFlux US-Whs Walnut Gulch Lucky Hills Shrub , 2016 .

[80]  D. Baldocchi,et al.  Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites , 2008 .

[81]  M. Goulden,et al.  Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion , 2014, Proceedings of the National Academy of Sciences.

[82]  Russell Scott AmeriFlux US-SRG Santa Rita Grassland , 2016 .

[83]  R. B. Jackson,et al.  Rooting depths, lateral root spreads and below‐ground/above‐ground allometries of plants in water‐limited ecosystems , 2002 .

[84]  Roger C. Bales,et al.  Evapotranspiration along an elevation gradient in California's Sierra Nevada , 2012 .

[85]  E. Davidson,et al.  The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures , 1994, Nature.

[86]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation , 2007 .

[87]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[88]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[89]  Thomas J. Jackson,et al.  Soil moisture retrieval from AMSR-E , 2003, IEEE Trans. Geosci. Remote. Sens..

[90]  M. Zreda,et al.  Footprint characteristics revised for field‐scale soil moisture monitoring with cosmic‐ray neutrons , 2015, 1602.04469.

[91]  S. Seneviratne,et al.  Assessment of future changes in water availability and aridity , 2015, Geophysical research letters.