On the compressive properties of aluminum and magnesium syntactic foams: experiment and simulation

[1]  I. Orbulov,et al.  Low-Cost Light-Weight Composite Metal Foams for Transportation Applications , 2022, Journal of Materials Engineering and Performance.

[2]  C. Lim,et al.  Redox-reaction phenomenon in cenosphere reinforced aluminum alloy matrix syntactic foam , 2021 .

[3]  C. Kádár,et al.  Effect of the interface on the compressive properties of magnesium syntactic foams , 2021 .

[4]  I. Orbulov,et al.  Manufacturing and investigation of aluminium matrix bimodal metal foams , 2020, IOP Conference Series: Materials Science and Engineering.

[5]  J. Dear,et al.  Micromechanical modelling of syntactic foam , 2020 .

[6]  Juan Wang,et al.  Microstructural characterization and compression mechanical response of glass hollow spheres/Al syntactic foams with different Mg additions , 2019, Materials Science and Engineering: A.

[7]  T. Fiedler,et al.  Compressive properties of zinc syntactic foams at elevated temperatures , 2019, Composites Part B: Engineering.

[8]  B. Katona,et al.  On the Filler Materials of Metal Matrix Syntactic Foams , 2019, Materials.

[9]  I. Orbulov,et al.  Compressive characteristics and low frequency damping of aluminium matrix syntactic foams , 2019, Materials Science and Engineering: A.

[10]  W. Lee,et al.  Influence of Partially Debonded Interface on Elasticity of Syntactic Foam: A Numerical Study , 2017, Materials.

[11]  Liviu Marsavina,et al.  Collapse mechanisms of metal foam matrix composites under static and dynamic loading conditions , 2017 .

[12]  I. Orbulov,et al.  Monitoring the failure mechanisms in metal matrix syntactic foams during compression by acoustic emission , 2016 .

[13]  Qiang Zhang,et al.  Interfacial microstructure and compressive properties of Al–Mg syntactic foam reinforced with glass cenospheres , 2016 .

[14]  I. Orbulov,et al.  Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres , 2015 .

[15]  Vasant Matsagar,et al.  Blast resistance of stiffened sandwich panels with aluminum cenosphere syntactic foam , 2015 .

[16]  S. Qu,et al.  Effects of hollow particle shape and distribution on the elastic properties of syntactic foams: 3D computational modeling , 2014 .

[17]  P. Rohatgi,et al.  Al–Al2O3 syntactic foams – Part I: Effect of matrix strength and hollow sphere size on the quasi-static properties of Al-A206/Al2O3 syntactic foams , 2013 .

[18]  P. Rohatgi,et al.  Predicting Mechanical Properties of Metal Matrix Syntactic Foams Reinforced with Ceramic Spheres , 2013 .

[19]  P. Zhu,et al.  Experimental study and numerical prediction of tensile strength properties and failure modes of hollow spheres filled syntactic foams , 2012 .

[20]  Nikhil Gupta,et al.  Magnesium Matrix Composite Foams—Density, Mechanical Properties, and Applications , 2012 .

[21]  M. Porfiri,et al.  A critical evaluation of micromechanical models for syntactic foams , 2012 .

[22]  I. Orbulov,et al.  Microstructural characterisation of syntactic foams , 2009 .

[23]  Qiang Zhang,et al.  High strain rate compression of cenosphere-pure aluminum syntactic foams , 2007 .

[24]  S. Das,et al.  FEM modeling of the interface and its effect on the elastio-plastic behavior of metal matrix composites , 2006 .

[25]  G. Gray,et al.  Plasticity and Damage in Aluminum Syntactic Foams Deformed under Dynamic and Quasi-Static Conditions , 2005 .

[26]  I. Orbulov,et al.  Effect of particle size and volume ratio of ceramic hollow spheres on the mechanical properties of bimodal composite metal foams , 2021 .

[27]  A. Rabiei,et al.  Ballistic Performance of a Composite Metal Foam-ceramic Armor System , 2014 .

[28]  I. Orbulov,et al.  On the microstructure of ceramic hollow microspheres , 2010 .