Biotic ligand model prediction of copper toxicity to daphnids in a range of natural waters in Chile

The objective of this study was to assess the predictive capacity of the biotic ligand model (BLM) for acute copper toxicity to daphnids as applied to a number of freshwaters from Chile and to synthetic laboratory-prepared waters. Thirty-seven freshwater bodies were sampled, chemically characterized, and used to determine the copper concentration associated with the 50% of mortality (LC50) for Daphnia magna, Daphnia pulex, and Daphnia obtusa (native to Chile). The data were then used to run three versions of the acute copper BLM, and the predicted LC50s were compared to the observed ones. The same was done with synthetic assay media at various hardness and dissolved organic carbon (DOC) levels. The BLM versions differed in the affinity constants for some biotic ligand-ion pairs, stability constants for inorganic Cu complexes, and assumptions regarding Cu binding to DOC. All three versions showed a high degree of predictive performance, mostly within a twofold range of observed toxicity values. The D. obtusa data set was used to compare water quality criteria (WQC) derived from the observed toxicity values with those derived from either the BLM or the U.S. Environmental Protection Agency (U.S. EPA) procedure. For most low DOC waters, the three procedures generated similar WQCs. For the high-DOC waters, the EPA-derived criteria were significantly lower, that is, greatly overprotective. The results are also discussed in terms of the validation of the BLM for regulatory use.

[1]  W. Carson,et al.  Prediction of incipient lethal levels of copper to juvenile Atlantic Salmon in the presence of humic acid by cupric electrode , 1973, Bulletin of environmental contamination and toxicology.

[2]  Colin R. Janssen,et al.  A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. , 2002, Environmental science & technology.

[3]  Colin R. Janssen,et al.  Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics: Development and validation of a biotic ligand model , 2002, Environmental toxicology and chemistry.

[4]  D. Dixon,et al.  Copper accumulation on gills of fathead minnows: Influence of water hardness, complexation and pH of the gill micro‐environment , 1992 .

[5]  R. Thurston,et al.  Effect of Complexation on Toxicity of Copper to Fishes , 1974 .

[6]  E. Tipping WHAM—a chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances , 1994 .

[7]  G. K. Pagenkopf Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness , 1983 .

[8]  P. Hodson,et al.  Effect of pH and Dissolved Organic Carbon on the Toxicity of Copper to Larval Fathead Minnow (Pimephales promelas) in Natural Lake Waters of Low Alkalinity , 1993 .

[9]  Colin R. Janssen,et al.  Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata , 2003, Environmental toxicology and chemistry.

[10]  E. Tipping,et al.  Testing a humic speciation model by titration of copper-amended natural waters , 1998 .

[11]  P. Paquin,et al.  Biotic ligand model of the acute toxicity of metals. 1. Technical Basis , 2001, Environmental toxicology and chemistry.

[12]  Colin R. Janssen,et al.  Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna. , 2002, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[13]  E. Tipping,et al.  Comparison of measured and modelled copper binding by natural organic matter in freshwaters. , 2002, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[14]  Colin R. Janssen,et al.  Using the biotic ligand model for predicting the acute sensitivity of cladoceran dominated communities to copper in natural surface waters. , 2004, Environmental science & technology.

[15]  D. J. Finney Statistical Method in Biological Assay , 1966 .

[16]  R. Playle,et al.  Copper and Cadmium Binding to Fish Gills: Estimates of Metal–Gill Stability Constants and Modelling of Metal Accumulation , 1993 .

[17]  Colin R. Janssen,et al.  Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna , 2004, Environmental toxicology and chemistry.

[18]  H. Bergman,et al.  Copper binding affinity of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) gills: Implications for assessing bioavailable metal , 1999 .

[19]  Robert C Santore,et al.  Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna. , 2002, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[20]  P. Paquin,et al.  Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia , 2001, Environmental toxicology and chemistry.