Flexible NiS2 film as high specific capacity cathode for thermal battery

[1]  Yan Yao,et al.  On the quality of tape-cast thin films of sulfide electrolytes for solid-state batteries , 2021 .

[2]  L. Fu,et al.  Excellent electrochemical performance of flexible NiO thin film as thermal battery cathode , 2020 .

[3]  Z. Wen,et al.  Electrochemical performance of NiCl2 with Br-free molten salt electrolyte in high power thermal batteries , 2020 .

[4]  Xiaopeng Han,et al.  Cobalt-Doped NiS2 Micro/Nanostructures with Complete Solid Solubility as High-Performance Cathode Materials for Actual High-Specific-Energy Thermal Batteries. , 2020, ACS applied materials & interfaces.

[5]  L. Fu,et al.  Thermal Stability of Nanocrystalline NiS2 as High Specific Capacity Thermal Battery Cathode Material , 2020, Advanced Engineering Materials.

[6]  L. Fu,et al.  High specific energy flexible CuO thin film cathode for thermal batteries , 2020 .

[7]  L. Fu,et al.  Cu2O as a promising cathode with high specific capacity for thermal battery , 2020 .

[8]  Haihui Wang,et al.  Tape‐Casting Li0.34La0.56TiO3 Ceramic Electrolyte Films Permit High Energy Density of Lithium‐Metal Batteries , 2019, Advanced materials.

[9]  Jingsong Liu,et al.  Effects of different MgO fiber structures on adhesive capacity and ionic migration of Li–Si/LiCl–KCl/FeS2 thermal batteries , 2019, Electrochimica Acta.

[10]  Yan-li Zhu,et al.  Hydrothermal synthesis of MoS2 with different morphology and its performance in thermal battery , 2018, Journal of Power Sources.

[11]  Zhi-Jian Liu,et al.  CoS2 Coatings for Improving Thermal Stability and Electrochemical Performance of FeS2 Cathodes for Thermal Batteries , 2018 .

[12]  Chuanyu Jin,et al.  A hierarchical carbon modified nano-NiS2 cathode with high thermal stability for a high energy thermal battery , 2018 .

[13]  Qi-bing Wu,et al.  Film cathode for thermal batteries using a screen-printing process , 2018 .

[14]  Xueying Wang,et al.  Electrochemical properties of the NiCl2 cathode with nickel foam substrate for thermal batteries , 2017 .

[15]  Y. Yoon,et al.  Organic binder‐free cathode using FeS2‐MWCNTs composite for thermal batteries , 2017 .

[16]  Chuanyu Jin,et al.  The acceleration intermediate phase (NiS and Ni 3 S 2 ) evolution by nanocrystallization in Li/NiS 2 thermal batteries with high specific capacity , 2017 .

[17]  Y. Yoon,et al.  Thin cathode for thermal batteries using a tape-casting process , 2017 .

[18]  Chuanyu Jin,et al.  Synthesis and discharge performances of NiCl2 by surface modification of carbon coating as cathode material of thermal battery , 2017 .

[19]  Xiuli Feng,et al.  Hydrothermal synthesized micro/nano-sized pyrite used as cathode material to improve the electrochemical performance of thermal battery , 2014, Journal of Applied Electrochemistry.

[20]  Hong Li,et al.  Thermodynamic analysis on energy densities of batteries , 2011 .

[21]  Ronald A. Guidotti,et al.  Thermal activated (thermal) battery technology: Part II. Molten salt electrolytes , 2008 .

[22]  Ronald A. Guidotti,et al.  Thermally activated ("thermal") battery technology Part I: An overview , 2006 .

[23]  R. Guidotti,et al.  Characterization of Fe/KClO4 Heat Powders and Pellets , 2005 .

[24]  Paul C. Butler,et al.  Long-life, multi-tap thermal battery development , 2004 .