Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome

The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena’s germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum. DOI: http://dx.doi.org/10.7554/eLife.19090.001

[1]  Theodor Boveri Uber Differenzierung der Zellkerne wahrend der Furchung des Eies von Ascaris megalocephala , 1887 .

[2]  E. Simon,et al.  Genetic control of maturity in Tetrahymena pyriformis. , 1967, Genetical research.

[3]  N. D. Levine,et al.  Biology of Tetrahymena , 1974 .

[4]  M. Yao,et al.  Isolation of micro- and macronuclei of Tetrahymena pyriformis. , 1975, Methods in cell biology.

[5]  E. Orias,et al.  Macronuclear genetics of Tetrahymena. I. Random distribution of macronuclear genecopies in T. pyriformis, syngen 1. , 1975, Genetics.

[6]  Mario Bunge,et al.  A model of evolution , 1978 .

[7]  M. Yao,et al.  Amplification of the rRNA genes in Tetrahymena. , 1979, Cold Spring Harbor symposia on quantitative biology.

[8]  J. Engberg,et al.  Synthesis of ribosomal DNA in conjugating Tetrahymena. , 1979, Experimental cell research.

[9]  E. Blackburn,et al.  Allele-specific, selective amplification of a ribosomal RNA gene in tetrahymena thermophila , 1982, Cell.

[10]  J. Engberg Strong sequence conservation of a 38 bp region near the center of the extrachromosomal rDNA palindrome in different Tetrahymena species. , 1983, Nucleic acids research.

[11]  C. Allis,et al.  Multiple, independently regulated, polyadenylated messages for histone H3 and H4 in Tetrahymena. , 1983, Nucleic acids research.

[12]  M. Yao,et al.  DNA elimination in tetrahymena: A developmental process involving extensive breakage and rejoining of DNA at defined sites , 1984, Cell.

[13]  M. Yao,et al.  Gene amplification in Tetrahymena thermophila: formation of extrachromosomal palindromic genes coding for rRNA. , 1985, Molecular and cellular biology.

[14]  M. B. Rogers,et al.  Adolescence in Tetrahymena thermophila. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[16]  Robert M. Miura,et al.  Some mathematical questions in biology : DNA sequence analysis , 1986 .

[17]  M. Yao,et al.  A conserved nucleotide sequence at the sites of developmentally regulated chromosomal breakage in tetrahymena , 1987, Cell.

[18]  G. Herrick,et al.  Alternative processing during development of a macronuclear chromosome family in Oxytricha fallax. , 1987, Genes & development.

[19]  E. Blackburn,et al.  Developmentally controlled telomere addition in wild-type and mutant paramecia , 1988, Molecular and cellular biology.

[20]  L. Klobutcher,et al.  Characterization of chromosome fragmentation in two protozoans and identification of a candidate fragmentation sequence in Euplotes crassus. , 1989, Genes & development.

[21]  M. Yao,et al.  Sequence microheterogeneity is generated at junctions of programmed DNA deletions in Tetrahymena thermophila. , 1989, Nucleic acids research.

[22]  M. Yao,et al.  The controlling sequence for site-specific chromosome breakage in tetrahymena , 1990, Cell.

[23]  R. Losick,et al.  The Bacillus subtilis gene for the development transcription factor sigma K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. , 1990, Genes & development.

[24]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[25]  M. Yao,et al.  Short inverted repeats at a free end signal large palindromic DNA formation in tetrahymena , 1991, Cell.

[26]  L. Klobutcher,et al.  Differential DNA amplification and copy number control in the hypotrichous ciliate Euplotes crassus. , 1991, The Journal of protozoology.

[27]  R. Pearlman,et al.  A micronucleus-limited sequence family in Tetrahymena thermophila: organization and sequence conservation. , 1992, Developmental genetics.

[28]  A. Adoutte,et al.  A broad molecular phylogeny of ciliates: identification of major evolutionary trends and radiations within the phylum. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[29]  F. Caron A high degree of macronuclear chromosome polymorphism is generated by variable DNA rearrangements in Paramecium primaurelia during macronuclear differentiation. , 1992, Journal of molecular biology.

[30]  M. Yao,et al.  A distant 10-bp sequence specifies the boundaries of a programmed DNA deletion in Tetrahymena. , 1993, Genes & development.

[31]  J. Forney,et al.  Molecular and genetic analyses of the B type surface protein gene from Paramecium tetraurelia. , 1993, Genetics.

[32]  J. Wells,et al.  A small family of elements with long inverted repeats is located near sites of developmentally regulated DNA rearrangement in Tetrahymena thermophila , 1994, Molecular and cellular biology.

[33]  M. Yao,et al.  A method for mapping germ line sequences in Tetrahymena thermophila using the polymerase chain reaction. , 1994, Genetics.

[34]  L. Amar Chromosome end formation and internal sequence elimination as alternative genomic rearrangements in the ciliate Paramecium. , 1994, Journal of molecular biology.

[35]  E. Blackburn,et al.  An unusual sequence arrangement in the telomeres of the germ-line micronucleus in Tetrahymena thermophila. , 1995, Genes & development.

[36]  T. Sato,et al.  Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. , 1995, Microbiology.

[37]  P. Huvos Developmental DNA rearrangements and micronucleus-specific sequences in five species within the Tetrahymena pyriformis species complex. , 1995, Genetics.

[38]  M. Yao,et al.  An intramolecular recombination mechanism for the formation of the rRNA gene palindrome of Tetrahymena thermophila , 1995, Molecular and cellular biology.

[39]  M. Yao,et al.  Evolutionary conservation of sequences directing chromosome breakage and rDNA palindrome formation in tetrahymenine ciliates. , 1996, Genetics.

[40]  R. Pearlman,et al.  Programmed DNA rearrangement from an intron during nuclear development in Tetrahymena thermophila: molecular analysis and identification of potential cis-acting sequences. , 1996, Nucleic acids research.

[41]  M. Yao,et al.  New telomere formation coupled with site-specific chromosome breakage in Tetrahymena thermophila , 1996, Molecular and cellular biology.

[42]  M. Cox,et al.  Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition‐like reaction pathway. , 1996, The EMBO journal.

[43]  M. Yao,et al.  Genome downsizing during ciliate development: nuclear division of labor through chromosome restructuring. , 1996, Annual review of genetics.

[44]  E. Louis,et al.  Chromosome ends: all the same under their caps. , 1997, Current opinion in genetics & development.

[45]  M. Adams,et al.  A tool for analyzing and annotating genomic sequences. , 1997, Genomics.

[46]  L. Klobutcher,et al.  Developmental genome reorganization in ciliated protozoa: the transposon link. , 1997, Progress in nucleic acid research and molecular biology.

[47]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[48]  M. Yao,et al.  Flanking Regulatory Sequences of theTetrahymena R Deletion Element Determine the Boundaries of DNA Rearrangement , 1999, Molecular and Cellular Biology.

[49]  S. Dongen A cluster algorithm for graphs , 2000 .

[50]  M. Yao,et al.  A long stringent sequence signal for programmed chromosome breakage in Tetrahymena thermophila. , 2000, Nucleic acids research.

[51]  K. Karrer,et al.  A developmentally regulated deletion element with long terminal repeats has cis-acting sequences in the flanking DNA. , 2000, Nucleic acids research.

[52]  F. Müller,et al.  Chromatin diminution in the parasitic nematodes ascaris suum and parascaris univalens. , 2000, International journal for parasitology.

[53]  M. Cox,et al.  Product analysis illuminates the final steps of IES deletion in Tetrahymena thermophila , 2001, The EMBO journal.

[54]  S. Henikoff,et al.  Conflict begets complexity: the evolution of centromeres. , 2002, Current opinion in genetics & development.

[55]  J. Gershan,et al.  A novel family of mobile genetic elements is limited to the germline genome in Tetrahymena thermophila. , 2002, Nucleic acids research.

[56]  M. Bétermier,et al.  Processing of Double-Strand Breaks Is Involved in the Precise Excision of Paramecium Internal Eliminated Sequences , 2003, Molecular and Cellular Biology.

[57]  A. Butler,et al.  Developmentally Regulated Chromosome Fragmentation Linked to Imprecise Elimination of Repeated Sequences in Paramecia , 2003, Eukaryotic Cell.

[58]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[59]  Stephen M. Mount,et al.  Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. , 2003, Nucleic acids research.

[60]  M. Yao,et al.  Comparison of the sequences of macro- and micronuclear DNA of Tetrahymena pyriformis , 2004, Chromosoma.

[61]  M. Bukrinsky A Hard Way to the Nucleus , 2004, Molecular medicine.

[62]  G. Steinbrück Overamplification of genes in macronuclei of hypotrichous ciliates , 1983, Chromosoma.

[63]  M. Gellert,et al.  The taming of a transposon: V(D)J recombination and the immune system , 2004, Immunological reviews.

[64]  F. Müller,et al.  Chromatin diminution leads to rapid evolutionary changes in the organization of the germ line genomes of the parasitic nematodes A. suum and P. univalens. , 2004, Molecular and biochemical parasitology.

[65]  Steven Salzberg,et al.  TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders , 2004, Bioinform..

[66]  L. DeBault,et al.  Life cycle variation and regulation of macronuclear DNA content in Tetrahymena thermophila , 1978, Chromosoma.

[67]  J. Fillingham,et al.  A Non-Long Terminal Repeat Retrotransposon Family Is Restricted to the Germ Line Micronucleus of the Ciliated Protozoan Tetrahymena thermophila , 2004, Eukaryotic Cell.

[68]  Steven Salzberg,et al.  Efficient decoding algorithms for generalized hidden Markov model gene finders , 2005, BMC Bioinformatics.

[69]  M. Gorovsky,et al.  Small RNAs in genome rearrangement in Tetrahymena. , 2004, Current opinion in genetics & development.

[70]  D. Schatz V(D)J recombination , 2002, Immunological reviews.

[71]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[72]  M. Yao,et al.  RNA-guided DNA deletion in Tetrahymena: an RNAi-based mechanism for programmed genome rearrangements. , 2005, Annual review of genetics.

[73]  A. Burt,et al.  Degeneration and domestication of a selfish gene in yeast: molecular evolution versus site-directed mutagenesis. , 2005, Molecular biology and evolution.

[74]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[75]  Pavel A. Pevzner,et al.  De novo identification of repeat families in large genomes , 2005, ISMB.

[76]  M. Gorovsky,et al.  Tetrahymena thermophila , 2005, Current Biology.

[77]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints , 2005, Nucleic Acids Res..

[78]  Christopher N Topp,et al.  Reinterpreting pericentromeric heterochromatin. , 2006, Current opinion in plant biology.

[79]  M. Yao,et al.  The CNA1 histone of the ciliate Tetrahymena thermophila is essential for chromosome segregation in the germline micronucleus. , 2005, Molecular biology of the cell.

[80]  Linh Vong,et al.  The Highly Conserved Family of Tetrahymena thermophila Chromosome Breakage Elements Contains an Invariant 10-Base-Pair Core , 2006, Eukaryotic Cell.

[81]  M. Gorovsky,et al.  Centromeric Histone H3 Is Essential for Vegetative Cell Division and for DNA Elimination during Conjugation in Tetrahymena thermophila , 2006, Molecular and Cellular Biology.

[82]  William H. Majoros,et al.  Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote , 2006, PLoS biology.

[83]  Q. Xia,et al.  Identification and characterization of piggyBac-like elements in the genome of domesticated silkworm, Bombyx mori , 2006, Molecular Genetics and Genomics.

[84]  J. Eisen,et al.  Use of HAPPY mapping for the higher order assembly of the Tetrahymena genome. , 2006, Genomics.

[85]  Inna Dubchak,et al.  The integrated microbial genomes (IMG) system , 2005, Nucleic Acids Res..

[86]  C. Feschotte,et al.  Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. , 2007, Gene.

[87]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[88]  P. Huvos Extensive Changes in the Locations and Sequence Content of Developmentally Deleted DNA Between Tetrahymena thermophila and its Closest Relative, T. malaccensis , 2007, The Journal of eukaryotic microbiology.

[89]  P. Ikonomi,et al.  Barcoding ciliates: a comprehensive study of 75 isolates of the genus Tetrahymena. , 2007, International journal of systematic and evolutionary microbiology.

[90]  Jonathan A Eisen,et al.  Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure , 2008, BMC Genomics.

[91]  Philippe Dessen,et al.  Analysis of sequence variability in the macronuclear DNA of Paramecium tetraurelia: a somatic view of the germline. , 2008, Genome research.

[92]  Wei Wang,et al.  Microarray Analyses of Gene Expression during the Tetrahymena thermophila Life Cycle , 2009, PloS one.

[93]  Nirmal Ranganathan,et al.  Exploring Repetitive DNA Landscapes Using REPCLASS, a Tool That Automates the Classification of Transposable Elements in Eukaryotic Genomes , 2009, Genome biology and evolution.

[94]  L. Landweber,et al.  A Functional Role for Transposases in a Large Eukaryotic Genome , 2009, Science.

[95]  Z. Ning,et al.  Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of GC-biased genomes , 2009, Nature Methods.

[96]  S. Henikoff,et al.  Major Evolutionary Transitions in Centromere Complexity , 2009, Cell.

[97]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[98]  Aurélie Kapusta,et al.  PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. , 2009, Genes & development.

[99]  M. Yao,et al.  A Domesticated piggyBac Transposase Plays Key Roles in Heterochromatin Dynamics and DNA Cleavage during Programmed DNA Deletion in Tetrahymena thermophila , 2010, Molecular biology of the cell.

[100]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[101]  Dennis C. Friedrich,et al.  A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries , 2011, Genome Biology.

[102]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[103]  R. Allshire,et al.  Building centromeres: home sweet home or a nomadic existence? , 2010, Current opinion in genetics & development.

[104]  S. Åström,et al.  Alpha3, a transposable element that promotes host sexual reproduction. , 2010, Genes & development.

[105]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[106]  R. Pearlman,et al.  The Tetrahymena Argonaute-Binding Protein Giw1p Directs a Mature Argonaute-siRNA Complex to the Nucleus , 2010, Cell.

[107]  N. Friedman,et al.  Comprehensive comparative analysis of strand-specific RNA sequencing methods , 2010, Nature Methods.

[108]  S. Fugmann The origins of the Rag genes--from transposition to V(D)J recombination. , 2010, Seminars in immunology.

[109]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[110]  M. Yao,et al.  DNA elimination in ciliates: transposon domestication and genome surveillance. , 2011, Annual review of genetics.

[111]  Ujjwal Kumar,et al.  Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control , 2011, Genome Biology.

[112]  M. Yao,et al.  Absence of Positive Selection on Centromeric Histones in Tetrahymena Suggests Unsuppressed Centromere-Drive in Lineages Lacking Male Meiosis , 2011, Journal of Molecular Evolution.

[113]  J. V. Moran,et al.  Dynamic interactions between transposable elements and their hosts , 2011, Nature Reviews Genetics.

[114]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[115]  Nikhil A. Joshi,et al.  Genome-Scale Analysis of Programmed DNA Elimination Sites in Tetrahymena thermophila , 2011, G3: Genes | Genomes | Genetics.

[116]  E. Orias,et al.  Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes. , 2011, Research in microbiology.

[117]  K. Mochizuki,et al.  Keeping the Soma Free of Transposons: Programmed DNA Elimination in Ciliates* , 2011, The Journal of Biological Chemistry.

[118]  H. Willard,et al.  Composition and organization of active centromere sequences in complex genomes , 2012, BMC Genomics.

[119]  Zhemin Zhou,et al.  Transcriptome Analysis of the Model Protozoan, Tetrahymena thermophila, Using Deep RNA Sequencing , 2012, PloS one.

[120]  C. Baker,et al.  Genetic Consequences of Programmed Genome Rearrangement , 2012, Current Biology.

[121]  P. Lesage,et al.  Two large-scale analyses of Ty1 LTR-retrotransposon de novo insertion events indicate that Ty1 targets nucleosomal DNA near the H2A/H2B interface , 2012, Mobile DNA.

[122]  Benjamin E. Lauderdale,et al.  The Paramecium Germline Genome Provides a Niche for Intragenic Parasitic DNA: Evolutionary Dynamics of Internal Eliminated Sequences , 2012, PLoS genetics.

[123]  J. Boeke,et al.  Active transposition in genomes. , 2012, Annual review of genetics.

[124]  R. S. Coyne,et al.  RNA‐guided DNA rearrangements in ciliates: Is the best genome defence a good offence? , 2012, Biology of the cell.

[125]  T. Noto,et al.  Biased transcription and selective degradation of small RNAs shape the pattern of DNA elimination in Tetrahymena. , 2012, Genes & development.

[126]  M. Garrido-Ramos,et al.  The repetitive DNA content of eukaryotic genomes. , 2012, Genome dynamics.

[127]  Andre R. O. Cavalcanti,et al.  A Model for the Evolution of Extremely Fragmented Macronuclei in Ciliates , 2013, PloS one.

[128]  L. Landweber,et al.  Genomes on the Edge: Programmed Genome Instability in Ciliates , 2013, Cell.

[129]  P. Andrews,et al.  Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. , 2013, Genes & development.

[130]  D. Chalker,et al.  Epigenetics of ciliates. , 2013, Cold Spring Harbor perspectives in biology.

[131]  J. Matese,et al.  The Oxytricha trifallax Macronuclear Genome: A Complex Eukaryotic Genome with 16,000 Tiny Chromosomes , 2013, PLoS biology.

[132]  R. Mueller,et al.  Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development , 2014, BMC Genomics.

[133]  M. Novatchkova,et al.  A Single Cohesin Complex Performs Mitotic and Meiotic Functions in the Protist Tetrahymena , 2013, PLoS genetics.

[134]  D. Chalker,et al.  LIA5 Is Required for Nuclear Reorganization and Programmed DNA Rearrangements Occurring during Tetrahymena Macronuclear Differentiation , 2013, PloS one.

[135]  Henriette M. Kurth,et al.  Loading and pre-loading processes generate a distinct siRNA population in Tetrahymena☆ , 2013, Biochemical and biophysical research communications.

[136]  J. Loidl,et al.  Mus81 nuclease and Sgs1 helicase are essential for meiotic recombination in a protist lacking a synaptonemal complex , 2013, Nucleic acids research.

[137]  L. Landweber,et al.  Transposon Domestication versus Mutualism in Ciliate Genome Rearrangements , 2013, PLoS genetics.

[138]  M. Lynch,et al.  Spliced DNA Sequences in the Paramecium Germline: Their Properties and Evolutionary Potential , 2013, Genome biology and evolution.

[139]  Alexander Vogt,et al.  A Domesticated PiggyBac Transposase Interacts with Heterochromatin and Catalyzes Reproducible DNA Elimination in Tetrahymena , 2013, PLoS genetics.

[140]  Laura F. Landweber,et al.  The Architecture of a Scrambled Genome Reveals Massive Levels of Genomic Rearrangement during Development , 2014, Cell.

[141]  M. Plohl,et al.  Centromere identity from the DNA point of view , 2014, Chromosoma.

[142]  Sean D. Taverna,et al.  Methylation of histone H3K23 blocks DNA damage in pericentric heterochromatin during meiosis , 2014, eLife.

[143]  M. Novatchkova,et al.  Msh4 and Msh5 Function in SC-Independent Chiasma Formation During the Streamlined Meiosis of Tetrahymena , 2014, Genetics.

[144]  C. Price,et al.  Tetrahymena Pot2 Is a Developmentally Regulated Paralog of Pot1 That Localizes to Chromosome Breakage Sites but Not to Telomeres , 2014, Eukaryotic Cell.

[145]  K. Bloom Centromeric heterochromatin: the primordial segregation machine. , 2014, Annual review of genetics.

[146]  Jianbin Wang,et al.  Programmed DNA elimination in multicellular organisms. , 2014, Current opinion in genetics & development.

[147]  T. Noto,et al.  Analysis of Piwi-loaded small RNAs in Tetrahymena. , 2014, Methods in molecular biology.

[148]  Alexander Vogt,et al.  The taming of the shrew , 2014, Mobile genetic elements.

[149]  M. Yao,et al.  Programmed Genome Rearrangements in Tetrahymena. , 2014, Microbiology spectrum.

[150]  M. Gorovsky,et al.  Small-RNA-Mediated Genome-wide trans-Recognition Network in Tetrahymena DNA Elimination , 2015, Molecular cell.

[151]  Eugene V Koonin,et al.  Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon , 2015, Biology Direct.

[152]  F. Guérin,et al.  DNA deletion as a mechanism for developmentally programmed centromere loss , 2015, Nucleic acids research.

[153]  Guenther Witzany,et al.  Biocommunication of Ciliates , 2016, Springer International Publishing.

[154]  R. Pearlman,et al.  Communication in Tetrahymena Reproduction , 2016 .

[155]  Shawn Rynearson,et al.  Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling , 2016, Genome Biology.

[156]  L. Sinzellea,et al.  Molecular domestication of transposable elements : From detrimental parasites to useful host genes , 2022 .