A Survey of Link Recommendation for Social Networks: Methods, Theoretical Foundations, and Future Research Directions

Link recommendation has attracted significant attentions from both industry practitioners and academic researchers. In industry, link recommendation has become a standard and most important feature in online social networks, prominent examples of which include "People You May Know" on LinkedIn and "You May Know" on Google+. In academia, link recommendation has been and remains a highly active research area. This paper surveys state-of-the-art link recommendation methods, which can be broadly categorized into learning-based methods and proximity-based methods. We further identify social and economic theories, such as social interaction theory, that underlie these methods and explain from a theoretical perspective why a link recommendation method works. Finally, we propose to extend link recommendation research in several directions that include utility-based link recommendation, diversity of link recommendation, link recommendation from incomplete data, and experimental study of link recommendation.

[1]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[2]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[3]  Linyuan Lu,et al.  Link prediction based on local random walk , 2010, 1001.2467.

[4]  Padhraic Smyth,et al.  Prediction and ranking algorithms for event-based network data , 2005, SKDD.

[5]  Dacheng Tao,et al.  Efficient Latent Link Recommendation in Signed Networks , 2015, KDD.

[6]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[7]  Jie Tang,et al.  Who will follow you back?: reciprocal relationship prediction , 2011, CIKM '11.

[8]  Wei Chu,et al.  Stochastic Relational Models for Discriminative Link Prediction , 2006, NIPS.

[9]  François Fouss,et al.  Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.

[10]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[11]  Xiao Fang,et al.  Inference-Based Naïve Bayes: Turning Naïve Bayes Cost-Sensitive , 2013, IEEE Transactions on Knowledge and Data Engineering.

[12]  G. Homans The human group , 1952 .

[13]  Linyuan Lü,et al.  Similarity index based on local paths for link prediction of complex networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Hisashi Kashima,et al.  A Parameterized Probabilistic Model of Network Evolution for Supervised Link Prediction , 2006, Sixth International Conference on Data Mining (ICDM'06).

[15]  Dan Cosley,et al.  Inferring social ties from geographic coincidences , 2010, Proceedings of the National Academy of Sciences.

[16]  Massimo Marinacci,et al.  Social Decision Theory: Choosing within and between Groups , 2012 .

[17]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994 .

[18]  Daniele Quercia,et al.  FriendSensing: recommending friends using mobile phones , 2009, RecSys '09.

[19]  Mi Zhang,et al.  Avoiding monotony: improving the diversity of recommendation lists , 2008, RecSys '08.

[20]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[21]  Tamara G. Kolda,et al.  Temporal Link Prediction Using Matrix and Tensor Factorizations , 2010, TKDD.

[22]  Jeffrey Pfeffer,et al.  The Effect of Uncertainty on the Use of Social Influence in Organizational Decision Making. , 1976 .

[23]  C. Berger,et al.  SOME EXPLORATIONS IN INITIAL INTERACTION AND BEYOND: TOWARD A DEVELOPMENTAL THEORY OF INTERPERSONAL COMMUNICATION , 1975 .

[24]  T. Sørensen,et al.  A method of establishing group of equal amplitude in plant sociobiology based on similarity of species content and its application to analyses of the vegetation on Danish commons , 1948 .

[25]  H. Kelley Attribution in social interaction. , 1987 .

[26]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Alexander J. Smola,et al.  Like like alike: joint friendship and interest propagation in social networks , 2011, WWW.

[28]  Lars Backstrom,et al.  Structural diversity in social contagion , 2012, Proceedings of the National Academy of Sciences.

[29]  Céline Rouveirol,et al.  A supervised machine learning link prediction approach for academic collaboration recommendation , 2010, RecSys '10.

[30]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[31]  Lise Getoor,et al.  Combining Collective Classification and Link Prediction , 2007 .

[32]  Jérôme Kunegis,et al.  Learning spectral graph transformations for link prediction , 2009, ICML '09.

[33]  Zan Huang Link Prediction Based on Graph Topology: The Predictive Value of Generalized Clustering Coefficient , 2010 .

[34]  Qiang Yang,et al.  Latent Friend Mining from Blog Data , 2006, Sixth International Conference on Data Mining (ICDM'06).

[35]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[36]  Ben Taskar,et al.  Learning Probabilistic Models of Relational Structure , 2001, ICML.

[37]  Jennifer Widom,et al.  SimRank: a measure of structural-context similarity , 2002, KDD.

[38]  Wei Tang,et al.  Supervised Link Prediction Using Multiple Sources , 2010, 2010 IEEE International Conference on Data Mining.

[39]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[40]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[41]  Olivia R. Liu Sheng,et al.  When is the Right Time to Refresh Knowledge Discovered From Data? , 2013, Oper. Res..

[42]  Giseli Rabello Lopes,et al.  Using link semantics to recommend collaborations in academic social networks , 2013, WWW.

[43]  Charu C. Aggarwal,et al.  Negative Link Prediction in Social Media , 2014, WSDM.

[44]  M. Newman Clustering and preferential attachment in growing networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Saul Vargas,et al.  Rank and relevance in novelty and diversity metrics for recommender systems , 2011, RecSys '11.

[46]  S. Leinhardt,et al.  The Structure of Positive Interpersonal Relations in Small Groups. , 1967 .

[47]  Nitesh V. Chawla,et al.  CoupledLP: Link Prediction in Coupled Networks , 2015, KDD.

[48]  G. Becker A Theory of Social Interactions , 1974 .

[49]  Ye Xu,et al.  Feature selection for link prediction , 2012, PIKM '12.

[50]  Gerard Salton,et al.  Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer , 1989 .

[51]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[52]  M. Newman,et al.  Why social networks are different from other types of networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Chunxiao Xing,et al.  Link Prediction for Bipartite Social Networks: The Role of Structural Holes , 2012, 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.

[54]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[55]  Francesco Bonchi,et al.  Cold start link prediction , 2010, KDD.

[56]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[57]  Jennifer Neville,et al.  Using Transactional Information to Predict Link Strength in Online Social Networks , 2009, ICWSM.

[58]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[59]  Ben Taskar,et al.  Learning Probabilistic Models of Link Structure , 2003, J. Mach. Learn. Res..

[60]  Dino Pedreschi,et al.  Human mobility, social ties, and link prediction , 2011, KDD.

[61]  J. M. McPherson,et al.  Evolution on a Dancing Landscape: Organizations and Networks in Dynamic Blau Space , 1991 .

[62]  Nitesh V. Chawla,et al.  New perspectives and methods in link prediction , 2010, KDD.

[63]  Rami Puzis,et al.  Link Prediction in Social Networks Using Computationally Efficient Topological Features , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[64]  Linyuan Lü,et al.  Predicting missing links via local information , 2009, 0901.0553.

[65]  Tamara G. Kolda,et al.  Link Prediction on Evolving Data Using Matrix and Tensor Factorizations , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[66]  Rossano Schifanella,et al.  Folks in Folksonomies: social link prediction from shared metadata , 2010, WSDM '10.

[67]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[68]  Cecilia Mascolo,et al.  Exploiting place features in link prediction on location-based social networks , 2011, KDD.

[69]  Roger Guimerà,et al.  Missing and spurious interactions and the reconstruction of complex networks , 2009, Proceedings of the National Academy of Sciences.

[70]  Samuel B. Bacharach,et al.  Organizational Theories: Some Criteria for Evaluation , 1989 .

[71]  Lyle H. Ungar,et al.  Statistical Relational Learning for Link Prediction , 2003 .

[72]  Nathan Srebro,et al.  Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.

[73]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[74]  Inderjit S. Dhillon,et al.  Multi-scale link prediction , 2012, CIKM '12.

[75]  Jure Leskovec,et al.  The Network Completion Problem: Inferring Missing Nodes and Edges in Networks , 2011, SDM.

[76]  S. Havlin,et al.  Optimization of network robustness to waves of targeted and random attacks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Michael J. Muller,et al.  Make new friends, but keep the old: recommending people on social networking sites , 2009, CHI.

[78]  Philip S. Yu,et al.  Meta-path based multi-network collective link prediction , 2014, KDD.

[79]  Mohammad Al Hasan,et al.  Link prediction using supervised learning , 2006 .

[80]  Steven B. Andrews,et al.  Structural Holes: The Social Structure of Competition , 1995, The SAGE Encyclopedia of Research Design.

[81]  Thomas J. Steenburgh,et al.  Motivating Salespeople: What Really Works , 2012, Harvard business review.

[82]  Jennifer Neville,et al.  Modeling relationship strength in online social networks , 2010, WWW '10.

[83]  Jun Yu,et al.  Learning Algorithms for Link Prediction Based on Chance Constraints , 2010, ECML/PKDD.

[84]  Jure Leskovec,et al.  Supervised random walks: predicting and recommending links in social networks , 2010, WSDM '11.

[85]  Paul Jen-Hwa Hu,et al.  Predicting Adoption Probabilities in Social Networks , 2012, Inf. Syst. Res..

[86]  Jiawei Han,et al.  A Unified Framework for Link Recommendation Using Random Walks , 2010, 2010 International Conference on Advances in Social Networks Analysis and Mining.

[87]  Zhe Zhang,et al.  Exploiting sentiment homophily for link prediction , 2014, RecSys '14.

[88]  Yu-Yang Huang,et al.  Unsupervised link prediction using aggregative statistics on heterogeneous social networks , 2013, KDD.

[89]  Christos Faloutsos,et al.  Fast Random Walk with Restart and Its Applications , 2006, Sixth International Conference on Data Mining (ICDM'06).

[90]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[91]  Masoud Makrehchi Social link recommendation by learning hidden topics , 2011, RecSys '11.

[92]  David D. Jensen,et al.  The case for anomalous link discovery , 2005, SKDD.

[93]  S. Feld The Focused Organization of Social Ties , 1981, American Journal of Sociology.

[94]  Lise Getoor,et al.  Using Friendship Ties and Family Circles for Link Prediction , 2008, SNAKDD.

[95]  F. Heider The psychology of interpersonal relations , 1958 .

[96]  Christopher M. Danforth,et al.  An evolutionary algorithm approach to link prediction in dynamic social networks , 2013, J. Comput. Sci..

[97]  Ben Taskar,et al.  Introduction to statistical relational learning , 2007 .

[98]  Zan Huang,et al.  The Time-Series Link Prediction Problem with Applications in Communication Surveillance , 2009, INFORMS J. Comput..

[99]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[100]  J. Pfeffer,et al.  A social information processing approach to job attitudes and task design. , 1978, Administrative science quarterly.

[101]  Ben Taskar,et al.  Link Prediction in Relational Data , 2003, NIPS.

[102]  Nicola Barbieri,et al.  Who to follow and why: link prediction with explanations , 2014, KDD.

[103]  George A. Akerlof Social Distance and Social Decisions , 1997 .

[104]  N. Eagle,et al.  Network Diversity and Economic Development , 2010, Science.

[105]  M. Newman,et al.  Vertex similarity in networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[106]  Sibel Adali,et al.  Actions speak as loud as words: predicting relationships from social behavior data , 2012, WWW.

[107]  David Maxwell Chickering,et al.  Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..

[108]  Mohammad Al Hasan,et al.  A Survey of Link Prediction in Social Networks , 2011, Social Network Data Analytics.

[109]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[110]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[111]  Yin Zhang,et al.  Scalable proximity estimation and link prediction in online social networks , 2009, IMC '09.

[112]  David Heckerman,et al.  Probabilistic Models for Relational Data , 2004 .

[113]  Charu C. Aggarwal,et al.  Data Streams - Models and Algorithms , 2014, Advances in Database Systems.

[114]  Srinivasan Parthasarathy,et al.  Local Probabilistic Models for Link Prediction , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[115]  Talcott Parsons The Role of Theory in Social Research , 1938 .