Notes on combinatorial set theory

We shall prove some unconnected theorems: (1) (G.C.H.) \omega _{\alpha + 1} \to \left( {\omega _\alpha + \xi } \right)_2^2 when ℵα is regular, │ξ│+<ωα. (2) There is a Jonsson algebra in ℵα+n, and \aleph _{a + n} \not \to \left[ {\aleph _{a + n} } \right]_{\aleph _{a + n} }^{n + 1} if 2^{\aleph _{ - - } } = \aleph _{a + n} \cdot (3) If λ>ℵ0 is a strong limit cardinal, then among the graphs with ≦λ vertices each of valence <λ there is a universal one. (4)(G.C.H.) If f is a set mapping on \omega _{a + 1} (ℵα regular) │f(x)∩f(y│<ℵα, then there is a free subset of order-type ζ for every ζ<ωα+1.