Choices and kernels in bipolar valued digraphs

We explore the extension of the notion of kernel (independent, dominant or absorbent, non-empty subset) of a digraph to valued graphs (or valued relations). We define various natural extensions and show the relationship between them. This work has potential interest for applications in choice decision problems.

[1]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[2]  C. Berge Théorie des graphes et ses applications , 1958 .

[3]  C. Berge Graphes et hypergraphes , 1970 .

[4]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[5]  Thomas Ströhlein,et al.  On Kernels of Graphs and Solutions of Games: A Synopsis Based on Relations and Fixpoints , 1985 .

[6]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[7]  Gunther Schmidt,et al.  Relationen und Graphen , 1989, Mathematik für Informatiker.

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  Raymond Bisdorff,et al.  Electre-like clustering from a pairwise fuzzy proximity index , 2002, Eur. J. Oper. Res..

[10]  L. Kitainik Fuzzy Decision Procedures with Binary Relations: Towards A Unified Theory , 1993 .

[11]  Bernard Roy,et al.  Classement et choix en présence de points de vue multiples , 1968 .

[12]  B. Roy Méthodologie multicritère d'aide à la décision , 1985 .

[13]  J. Riguet,et al.  Relations binaires, fermetures, correspondances de Galois , 1948 .

[14]  Valérie Henry,et al.  Regards croisés sur les méthodes quantitatives de gestion , 2004 .

[15]  Raymond Bisdorff,et al.  Logical foundation of fuzzy preferential systems with application to the electre decision aid methods , 2000, Comput. Oper. Res..

[16]  J. Neumann,et al.  Theory of Games and Economic Behavior. , 1945 .