The bottom-up approach to molecular-level devices and machines.

The macroscopic concepts of a device and a machine can be extended to the molecular level. Molecular-level devices and machines are constructed by a bottom-up approach. The atom-by-atom bottom-up approach is unrealistic from the chemical viewpoint. The bottom-up approach molecule-by-molecule following the guidelines of supramolecular (multicomponent) chemistry has proved to be successful. The extension of the concepts of a device and a machine to the molecular level is of interest not only for basic research, but also for the growth of nanoscience and the development of nanotechnology.

[1]  Joel S. Miller,et al.  Molecular materials II Part A. Molecular electronics , 1990 .

[2]  A. Hirsch,et al.  The molecular world cup: synthesis of a fullerene-calix[4]arene conjugate containing two malonamide substituents within the upper rim , 1998 .

[3]  J. Fraser Stoddart,et al.  Künstliche molekulare Maschinen , 2000 .

[4]  D. Moebius Molecular cooperation in monolayer organizates , 1981 .

[5]  P. Bordat,et al.  Watching the Photo-Oxidation of a Single Aromatic Hydrocarbon Molecule. , 2001, Angewandte Chemie.

[6]  K. Schulten,et al.  The quantum physics of photosynthesis. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  V. Balzani,et al.  Towards a Supramolecular Photochemistry: Assembly of Molecular Components to Obtain Photochemical Molecular Devices , 1987 .

[8]  Charles J. Pedersen,et al.  Die Entdeckung der Kronenether (Nobel‐Vortrag) , 1988 .

[9]  M. Albrecht,et al.  "Let's twist again"--double-stranded, triple-stranded, and circular helicates. , 2001, Chemical reviews.

[10]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[11]  R. Metzger,et al.  The quest for unimolecular devices 101 , 1991 .

[12]  M. Paddon-Row,et al.  A synthetic strategy for the construction of a novel series of rigid supramolecular triads , 1993 .

[13]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .

[14]  J. Lehn,et al.  Supramolekulare Chemie – Moleküle, Übermoleküle und molekulare Funktionseinheiten (Nobel-Vortrag)† , 1988 .

[15]  A. Merbach,et al.  Perspectives in Coordination Chemistry , 1992 .

[16]  J. Lehn,et al.  Lumineszenzsonden: Quantitative photophysikalische Ergebnisse von Eu3⊕‐ und Tb3⊕‐Cryptaten makrobicyclischer Polypyridinliganden , 1987 .

[17]  A. Aviram Molecular Electronics Science and Technology , 1989 .

[18]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[19]  V. Balzani,et al.  Energy-transfer processes of excited states of coordination compounds , 1983 .

[20]  F. Kulzer,et al.  Fluoreszenzmikroskopische Verfolgung des photooxidativen Abbaus eines einzelnen aromatischen Kohlenwasserstoffmoleküls , 2001 .

[21]  E. Fischer Einfluss der Configuration auf die Wirkung der Enzyme , 1894 .

[22]  J. Rebek Host–guest chemistry of calixarene capsules , 2000 .

[23]  C. Dietrich-Buchecker,et al.  Structure of a Synthetic Trefoil Knot Coordinated to Two Copper(I) Centers , 1990 .

[24]  G. Stix Waiting for Breakthroughs , 1996 .

[25]  F. L. Carter Molecular Electronic Devices II , 1987 .

[26]  P. Stang,et al.  Self-Assembly, Symmetry, and Molecular Architecture: Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra , 1997 .

[27]  U. Linz,et al.  Diamond thin film technology II Part A†. Diamond and diamond-like carbon , 1990 .

[28]  David E. J. Jones Technical boundless optimism , 1995, Nature.

[29]  Charles J. Pedersen,et al.  The Discovery of Crown Ethers (Noble Lecture) , 1988 .

[30]  Kumar Biradha,et al.  Molecular paneling via coordination , 2001 .

[31]  E. Schrödinger SCIENCE AND HUMANISM Physics in Our Time , 1952 .

[32]  D. Muller,et al.  The electronic structure at the atomic scale of ultrathin gate oxides , 1999, Nature.

[33]  Gary Stix,et al.  Little Big Science. , 1999 .

[34]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[35]  F. Cramer Chaos and Order: The Complex Structure of Living Systems , 1993 .

[36]  J. Lehn,et al.  Supramolecular assemblies of a bis(terpyridine) ligand and of its [2x2] grid-type Zn(II) and Co(II) complexes on highly ordered pyrolytic graphite. , 2002, Chemistry.

[37]  Jean-Marie Lehn,et al.  Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .

[38]  V. Balzani,et al.  Photochemistry and photophysics of Ru(II)polypyridine complexes in the Bologna group. From early studies to recent developments , 2001 .

[39]  J. Sauvage Transition metals in supramolecular chemistry , 1999 .

[40]  A. V. Zelewsky,et al.  The bright future of stereoselective synthesis of co-ordination compounds , 2000 .

[41]  L. Echegoyen,et al.  Electrochemistry of Supramolecular Systems. , 1998, Angewandte Chemie.

[42]  J. Fraser Stoddart,et al.  SYNTHETIC SUPRAMOLECULAR CHEMISTRY , 1997 .

[43]  R. Watts Ruthenium polypyridyls: A case study , 1983 .

[44]  J. H. V. Hoff,et al.  La chimie dans l'espace , 1875 .

[45]  S. Mccartney ENIAC: The Triumphs and Tragedies of the World's First Computer , 1999 .

[46]  M. Therien,et al.  Direct evaluation of electronic coupling mediated by hydrogen bonds: implications for biological electron transfer , 1995, Science.

[47]  K E Drexler,et al.  Machine-phase nanotechnology. , 2001, Scientific American.

[48]  D. Reinhoudt,et al.  An organic molecule with a rigid cavity of nanosize dimensions , 1994 .

[49]  F. Vögtle Fascinating molecules in organic chemistry , 1992 .

[50]  William Schulz NANOTECHNOLOGY: THE NEXT BIG THING: U.S. National Nanotechnology Initiative aims to create another Industrial Revolution , 2000 .

[51]  D. Reinhoudt,et al.  Ein organisches Molekül mit einem starren, nanometergroßen Hohlraum , 1994 .

[52]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[53]  Vincenzo Balzani,et al.  Molecular-Level Devices , 1999 .

[54]  H. Schneider,et al.  Principles and Methods in Supramolecular Chemistry , 2000 .

[55]  Chad A. Mirkin,et al.  Koordinationschemische Synthesemethoden zum Aufbau supramolekularer Verbindungen , 2001 .

[56]  J. Sauvage,et al.  Struktur einer an zwei Kupfer(I)‐Zentren koordinierten Kleeblattknoten‐ Verbindung , 1990 .

[57]  Jonathan S. Lindsey,et al.  Self-Assembly in Synthetic Routes to Molecular Devices. Biological Principles and Chemical Perspectives: A Review , 1991 .

[58]  T. Moore,et al.  Photodriven transmembrane charge separation and electron transfer by a carotenoporphyrin–quinone triad , 1985, Nature.

[59]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[60]  Eugene Meyer Introduction to modern chemistry , 1979 .

[61]  J. Lehn,et al.  Perspektiven der Supramolekularen Chemie – von der molekularen Erkennung zur molekularen Informationsverarbeitung und Selbstorganisation , 1990 .

[62]  W. E. Moerner,et al.  A Dozen Years of Single-Molecule Spectroscopy in Physics, Chemistry, and Biophysics , 2002 .

[63]  Vincenzo Balzani,et al.  Controlled disassembling of self-assembling systems: Toward artificial molecular-level devices and machines , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. F. Stoddart,et al.  Oligocatenanes Made to Order1 , 1998 .

[65]  Richard A. Keller,et al.  Single Molecule Detection in Solution , 2002 .

[66]  Philip Ball,et al.  Chemistry meets computing , 2000, Nature.

[67]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .

[68]  Graham R. L. Cousins,et al.  Dynamische kovalente Chemie , 2002 .

[69]  Donald J. Cram,et al.  Von molekularen Wirten und Gästen sowie ihren Komplexen: Nobel-Vortrag , 1988 .

[70]  Vincenzo Balzani,et al.  Luminescence Probes: The Eu3⊕‐ and Tb3⊕‐Cryptates of Polypyridine Macrobicyclic Ligands , 1987 .

[71]  Michael James Steuart Dewar An introduction to modern chemistry , 1965 .

[72]  Must a molecule have a shape , 1978 .

[73]  J. F. Stoddart,et al.  Supramolecular science : where it is and where it is going , 1998 .

[74]  H. Schneider,et al.  Frontiers in Supramolecular Organic Chemistry and Photochemistry , 1991 .

[75]  K. Rieder,et al.  Inducing single-molecule chemical reactions with a UHV-STM: a new dimension for nano-science and technology. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[76]  F. Vögtle,et al.  Dendrimers and dendrons , 2001 .

[77]  Seiji Shinkai,et al.  Photoresponsive crown ethers. 2. Photocontrol of ion extraction and ion transport by a bis(crown ether) with a butterfly-like motion , 1981 .

[78]  Jack W. Judy,et al.  Microelectromechanical systems (MEMS): fabrication, design and applications , 2001 .

[79]  Ivan Amato,et al.  Fomenting a Revolution, in Miniature , 1998, Science.

[80]  R. Vale,et al.  The way things move: looking under the hood of molecular motor proteins. , 2000, Science.

[81]  R. Smalley Of chemistry, love and nanobots. , 2001, Scientific American.

[82]  J Nathans,et al.  The challenge of macular degeneration. , 2001, Scientific American.

[83]  J. F. Stoddart,et al.  Stimulating Concepts in Chemistry , 2000 .

[84]  Donald J. Cram The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture)† , 1988 .

[85]  Jean-Marie Lehn,et al.  Toward complex matter: Supramolecular chemistry and self-organization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Chad A. Mirkin,et al.  Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry. , 2001, Angewandte Chemie.

[87]  A. Werner,et al.  Beitrag zur Konstitution anorganischer Verbindungen , 1895 .

[88]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .