An Ultimate-Shannon-Limit-Approaching Gbps Throughput Encoder/Decoder System

A turbo-Hadamard code (THC) is a type of low-rate channel code with capacity approaching the ultimate Shannon limit, i.e., −1.59 dB. In this brief, we investigate the hardware design of a turbo-Hadamard encoder/decoder system. The entire system has been implemented on an FPGA board. A bit error rate (BER) of 10<sup>−5</sup> can be achieved at <inline-formula> <tex-math notation="LaTeX">$E_{b}/N_{0} = 0.04$ </tex-math></inline-formula> dB with a throughput of 3.2 Gbps or at <inline-formula> <tex-math notation="LaTeX">$E_{b}/N_{0} = -0.45$ </tex-math></inline-formula> dB with a throughput of 1.92 Gbps.

[1]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[2]  Li Ping,et al.  Low-rate turbo-Hadamard codes , 2001, IEEE Trans. Inf. Theory.

[3]  Andrew Thangaraj,et al.  Construction of Near-Capacity Protograph LDPC Code Sequences With Block-Error Thresholds , 2015, IEEE Transactions on Communications.

[4]  Francis C. M. Lau,et al.  A 3.0 Gb/s Throughput Hardware-Efficient Decoder for Cyclically-Coupled QC-LDPC Codes , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Brian K. Classon,et al.  Contention-Free Interleavers for High-Throughput Turbo Decoding , 2008, IEEE Transactions on Communications.

[6]  Li Ping,et al.  Generalized Low-Density Parity-Check Codes Based on Hadamard Constraints , 2007, IEEE Transactions on Information Theory.

[7]  Vassilis Paliouras,et al.  Approximate Algorithms for Identifying Minima on Min-Sum LDPC Decoders and Their Hardware Implementation , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Ming Zhao,et al.  Design of a High-Throughput QC-LDPC Decoder With TDMP Scheduling , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[9]  Francis Chung-Ming Lau,et al.  Design and error performance of punctured hadamard codes , 2017, 2017 23rd Asia-Pacific Conference on Communications (APCC).

[10]  Li Ping,et al.  Concatenated zigzag hadamard codes , 2006, IEEE Transactions on Information Theory.