A New Technique for Combining Multiple Classifiers using The Dempster-Shafer Theory of Evidence

This paper presents a new classifier combination technique based on the Dempster-Shafer theory of evidence. The Dempster-Shafer theory of evidence is a powerful method for combining measures of evidence from different classifiers. However, since each of the available methods that estimates the evidence of classifiers has its own limitations, we propose here a new implementation which adapts to training data so that the overall mean square error is minimized. The proposed technique is shown to outperform most available classifier combination methods when tested on three different classification problems.

[1]  D. Sankoff,et al.  Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. , 1997, Genetics.

[2]  Jonathan G. Fiscus,et al.  Darpa Timit Acoustic-Phonetic Continuous Speech Corpus CD-ROM {TIMIT} | NIST , 1993 .

[3]  Stefan Edelkamp,et al.  Towards Realistic Benchmarks for Planning: the Domains Used in the Classical Part of IPC-4 , 2004 .

[4]  P. Smets Data fusion in the transferable belief model , 2000, Proceedings of the Third International Conference on Information Fusion.

[5]  David E. Smith,et al.  Temporal Planning with Mutual Exclusion Reasoning , 1999, IJCAI.

[6]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[7]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[8]  Ching Y. Suen,et al.  Optimal combinations of pattern classifiers , 1995, Pattern Recognit. Lett..

[9]  Philippe Smets,et al.  The Combination of Evidence in the Transferable Belief Model , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  A. Sidow Gen(om)e duplications in the evolution of early vertebrates. , 1996, Current opinion in genetics & development.

[11]  G DietterichThomas An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees , 2000 .

[12]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Philippe Smets,et al.  The Transferable Belief Model for Quantified Belief Representation , 1998 .

[14]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[15]  Byoung-Tak Zhang,et al.  Evolving Optimal Neural Networks Using Genetic Algorithms with Occam's Razor , 1993, Complex Syst..

[16]  Nicholas R. Jennings,et al.  Controlling Cooperative Problem Solving in Industrial Multi-Agent Systems Using Joint Intentions , 1995, Artif. Intell..

[17]  Sung-Bae Cho,et al.  Multiple network fusion using fuzzy logic , 1995, IEEE Trans. Neural Networks.

[18]  Austin Tate,et al.  O-Plan: The open Planning Architecture , 1991, Artif. Intell..

[19]  Nicola Guarino,et al.  Dwq : Esprit Long Term Research Project, No 22469 Part-whole Relations in Object-centered Systems: an Overview Part-whole Relations in Object-centered Systems: an Overview , 2022 .

[20]  Carlo C. Maley,et al.  Four steps toward open-ended evolution , 1999 .

[21]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[22]  L. V. Valen,et al.  A new evolutionary law , 1973 .

[23]  Sheik Meeran,et al.  New and “Stronger” Job-Shop Neighbourhoods: A Focus on the Method of Nowicki and Smutnicki (1996) , 2000, J. Heuristics.

[24]  Bernhard Nebel,et al.  Solving hard qualitative temporal reasoning problems: Evaluating the efficiency of using the ORD-Horn class , 1997, Constraints.

[25]  Josef Kittler,et al.  Experimental evaluation of expert fusion strategies , 1999, Pattern Recognit. Lett..

[26]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[27]  J. Kohlas,et al.  A Mathematical Theory of Hints: An Approach to the Dempster-Shafer Theory of Evidence , 1995 .

[28]  Bruce W. Schmeiser,et al.  Improving model accuracy using optimal linear combinations of trained neural networks , 1995, IEEE Trans. Neural Networks.

[29]  Galina L. Rogova,et al.  Combining the results of several neural network classifiers , 1994, Neural Networks.

[30]  C. Lee Giles,et al.  Talking Helps: Evolving Communicating Agents for the Predator-Prey Pursuit Problem , 2000, Artificial Life.

[31]  M. Sugeno FUZZY MEASURES AND FUZZY INTEGRALS—A SURVEY , 1993 .

[32]  E. Mandler,et al.  Combining the Classification Results of Independent Classifiers Based on the Dempster/Shafer Theory of Evidence , 1988 .

[33]  Premkumar T. Devanbu,et al.  Adding more "DL" to IDL: towards more knowledgeable component inter-operability , 1999, Proceedings of the 1999 International Conference on Software Engineering (IEEE Cat. No.99CB37002).

[34]  Jonathan Schaeffer,et al.  Sokoban: Enhancing general single-agent search methods using domain knowledge , 2001, Artif. Intell..

[35]  Andrew B. Kahng,et al.  A new adaptive multi-start technique for combinatorial global optimizations , 1994, Oper. Res. Lett..

[36]  Margaret R. Thomson,et al.  Vertebrate genome evolution and the zebrafish gene map , 1998, Nature Genetics.

[37]  Weixiong Zhang,et al.  Towards flexible teamwork in persistent teams , 1998, Proceedings International Conference on Multi Agent Systems (Cat. No.98EX160).

[38]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[39]  Thomas G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization , 2000, Machine Learning.

[40]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[41]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[42]  Bernd Fritzke,et al.  A Growing Neural Gas Network Learns Topologies , 1994, NIPS.

[43]  Peter F. Patel-Schneider,et al.  "Reducing" CLASSIC to Practice: Knowledge Representation Theory Meets Reality , 1999, Artif. Intell..

[44]  Abhimanyu Das,et al.  Adaptive Agent Integration Architectures for Heterogeneous Team Members , 2000, ICMAS.

[45]  Toby Walsh,et al.  Random Constraint Satisfa tion : Flaws and Stru ture ? , 1998 .

[46]  Drew McDermott,et al.  The 1998 AI Planning Systems Competition , 2000, AI Mag..

[47]  Kristian Lindgrena,et al.  Coevolution of strategies in n-person Prisoner ' s Dilemma , 2000 .

[48]  C. Radding,et al.  Homologous pairing and strand exchange in genetic recombination. , 1982, Annual review of genetics.

[49]  Gil A. Tidhar Team-Oriented Programming: Preliminary Report , 1993 .

[50]  Thierry Denoeux,et al.  A neural network classifier based on Dempster-Shafer theory , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[51]  Matthew L. Ginsberg,et al.  Iterative Broadening , 1990, Artif. Intell..

[52]  Risto Miikkulainen,et al.  Visualizing High-Dimensional Structure with the Incremental Grid Growing Neural Network , 1995, ICML.

[53]  Sung-Bae Cho,et al.  Combining multiple neural networks by fuzzy integral for robust classification , 1995, IEEE Trans. Syst. Man Cybern..

[54]  Risto Miikkulainen,et al.  Efficient Reinforcement Learning Through Evolving Neural Network Topologies , 2002, GECCO.

[55]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[56]  Diego Calvanese,et al.  Unifying Class-Based Representation Formalisms , 2011, J. Artif. Intell. Res..

[57]  Anthony G. Cohn,et al.  Computing Transivity Tables: A Challenge For Automated Theorem Provers , 1992, CADE.

[58]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[59]  Alan Bundy,et al.  The Combination of Different Pieces of Evidence Using Incidence Calculus , 1992 .

[60]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[61]  Sargur N. Srihari,et al.  Decision Combination in Multiple Classifier Systems , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  Richard E. Korf,et al.  Additive Pattern Database Heuristics , 2004, J. Artif. Intell. Res..

[64]  Peter F. Patel-Schneider,et al.  Usability Issues in Knowledge Representation Systems , 1998, AAAI/IAAI.

[65]  Milind Tambe,et al.  An Automated Teamwork Infrastructure for Heterogeneous Software Agents and Humans , 2003, Autonomous Agents and Multi-Agent Systems.

[66]  John Yen,et al.  CAST: Collaborative Agents for Simulating Teamwork , 2001, IJCAI.

[67]  Sophie Cluet Modeling and Querying Semi-structured Data , 1997, SCIE.

[68]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[69]  Craig Boutilier,et al.  Planning, Learning and Coordination in Multiagent Decision Processes , 1996, TARK.