Electrostatics in periodic boundary conditions and real-space corrections

We address periodic-image errors arising from the use of periodic boundary conditions to describe systems that do not exhibit full three-dimensional periodicity. The difference between the periodic potential, as straightforwardly obtained from a Fourier transform, and the potential satisfying any other boundary conditions can be characterized analytically. In light of this observation, we present an efficient real-space method to correct periodic-image errors, based on a multigrid solver for the potential difference, and demonstrate that excellent convergence of the energy with respect to cell size can be achieved in practical calculations. Additionally, we derive rapidly convergent expansions for determining the Madelung constants of point-charge assemblies in one, two, and three dimensions.

[1]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[2]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[3]  Michael J. Holst,et al.  Multigrid solution of the Poisson—Boltzmann equation , 1992, J. Comput. Chem..

[4]  K. Kudin,et al.  Linear scaling density functional theory with Gaussian orbitals and periodic boundary conditions , 2000 .

[5]  Nicola Marzari,et al.  A unified electrostatic and cavitation model for first-principles molecular dynamics in solution. , 2006, The Journal of chemical physics.

[6]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[7]  S. Ismail-Beigi Truncation of periodic image interactions for confined systems , 2006, cond-mat/0603448.

[8]  B. M. Fulk MATH , 1992 .

[9]  A. Alavi,et al.  Reconstruction of charged surfaces: General trends and a case study of Pt(110) and Au(110) , 2003 .

[10]  Anthony C. Hess,et al.  Gaussian basis density functional theory for systems periodic in two or three dimensions: Energy and forces , 1996 .

[11]  Michael J. Holst,et al.  Numerical solution of the nonlinear Poisson–Boltzmann equation: Developing more robust and efficient methods , 1995, J. Comput. Chem..

[12]  M Leslie,et al.  The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method , 1985 .

[13]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[14]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[15]  Paul Garabedian,et al.  Lectures on partial differential equations , 1964 .

[16]  Schultz,et al.  Charged local defects in extended systems , 2000, Physical review letters.

[17]  J. Ziman Principles of the Theory of Solids , 1965 .

[18]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[19]  Boris Kozinsky,et al.  Static dielectric properties of carbon nanotubes from first principles. , 2006, Physical review letters.

[20]  M. Parrinello,et al.  Density functional study of small aqueous Be2+ clusters , 1995 .

[21]  Andrew G. Glen,et al.  APPL , 2001 .

[22]  Alfredo Pasquarello,et al.  Ab initio molecular dynamics in a finite homogeneous electric field. , 2002, Physical review letters.

[23]  E. Gross,et al.  Exact coulomb cutoff technique for supercell calculations , 2006, cond-mat/0601031.

[24]  Don H. Johnson,et al.  Gauss and the history of the fast Fourier transform , 1985 .

[25]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[26]  Mark E. Tuckerman,et al.  A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters , 1999 .

[27]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[28]  Baroni,et al.  Band offsets in lattice-matched heterojunctions: A model and first-principles calculations for GaAs/AlAs. , 1988, Physical review letters.

[29]  D. Vanderbilt,et al.  Ab initio study of BaTiO 3 and PbTiO 3 surfaces in external electric fields , 2000, cond-mat/0009288.

[30]  R. W. Godby,et al.  Supercell technique for total-energy calculations of finite charged and polar systems , 1997, cond-mat/9709234.

[31]  David Vanderbilt,et al.  First-principles approach to insulators in finite electric fields. , 2002, Physical review letters.

[32]  P. Blöchl,et al.  Electrostatic decoupling of periodic images of plane‐wave‐expanded densities and derived atomic point charges , 1995 .

[33]  W. Kohn,et al.  Theory of Metal Surfaces: Induced Surface Charge and Image Potential. , 1973 .

[34]  Minoru Otani,et al.  First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach , 2006 .

[35]  B. U. Felderhof,et al.  Electrostatic interactions in two-dimensional Coulomb systems with periodic boundary conditions , 1989 .

[36]  L. Kronik,et al.  Computing surface dipoles and potentials of self-assembled monolayers from first principles , 2006 .

[37]  L. Bengtsson,et al.  Dipole correction for surface supercell calculations , 1999 .

[38]  Jean-Luc Fattebert,et al.  First‐principles molecular dynamics simulations in a continuum solvent , 2003 .

[39]  Barnett,et al.  Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2. , 1993, Physical review. B, Condensed matter.

[40]  Gustavo E Scuseria,et al.  Revisiting infinite lattice sums with the periodic fast multipole method. , 2004, The Journal of chemical physics.

[41]  Baroni,et al.  Electronic structure of InP/Ga0.47In0.53As interfaces. , 1990, Physical review. B, Condensed matter.