Large elastocaloric effect in a Heusler-type Co50V35Ga14Ni1 polycrystalline alloy

Solid state refrigeration technology relies on the high-performance materials with remarkable caloric properties. Here, we demonstrate a large elastocaloric effect through stress-induced martensitic transformation in a Heusler-type Co50V35Ga14Ni1 polycrystalline alloy. By rapidly removing a moderate compressive stress of 400 MPa, a large adiabatic temperature change up to −12.1 K is achieved. Moreover, high cyclability of the elastocaloric effect with more than 4000 loading/unloading cycles is also obtained. With the combination of a large elastocaloric effect and good cyclability, Co-V-Ga based alloys hold great potential for environment-friendly solid-state refrigeration applications.

[1]  Yuan Yuan,et al.  Microstructure and giant baro-caloric effect induced by low pressure in Heusler Co51Fe1V33Ga15 alloy undergoing martensitic transformation , 2021 .

[2]  Kewei Zhang,et al.  Enhanced elastocaloric effect and mechanical properties of Gd-doped Ni–Mn–Sn-Gd ferromagnetic shape memory alloys , 2020 .

[3]  Xiaoliang Zhang,et al.  Enhanced cyclability of elastocaloric effect in a directionally solidified Ni55Mn18Ga26Ti1 alloy with low hysteresis , 2020 .

[4]  Yongfeng Hu,et al.  Magnetic-field-driven reverse martensitic transformation with multiple magneto-responsive effects by manipulating magnetic ordering in Fe-doped Co-V-Ga Heusler alloys , 2020 .

[5]  M. Imran,et al.  Recent developments on the cyclic stability in elastocaloric materials , 2020 .

[6]  C. Esling,et al.  A multielement alloying strategy to improve elastocaloric and mechanical properties in Ni–Mn-based alloys via copper and boron , 2020 .

[7]  Jian Liu,et al.  Low-temperature superelasticity and elastocaloric effect in textured Ni–Mn–Ga–Cu shape memory alloys , 2020 .

[8]  Yanjing Su,et al.  Tuning the operation temperature window of the elastocaloric effect in Cu–Al–Mn shape memory alloys by composition design , 2020 .

[9]  Jia-Jyun Shen,et al.  Mechanical and elastocaloric effect of aged Ni-rich TiNi shape memory alloy under load-controlled deformation , 2020 .

[10]  M. Imran,et al.  Elastocaloric effects in polycrystalline Ni-Fe-Ga foams with hierarchical pore architecture , 2020 .

[11]  C. Esling,et al.  Achieving a broad refrigeration temperature region through the combination of successive caloric effects in a multiferroic Ni50Mn35In15 alloy , 2020 .

[12]  M. Imran,et al.  Enhanced cyclic stability of elastocaloric effect in oligocrystalline Cu–Al–Mn microwires via cold-drawing , 2020 .

[13]  Guojie Zhang,et al.  Effect of Ni doping on martensitic transformation and magnetic properties for Co50V25Ga25∼26 Heusler alloy , 2020 .

[14]  Zhidong Zhang,et al.  Low-pressure-induced giant barocaloric effect in an all-d-metal Heusler Ni35.5Co14.5Mn35Ti15 magnetic shape memory alloy , 2020 .

[15]  Jian Liu,et al.  Large elastocaloric effect in directionally solidified all-d-metal Heusler metamagnetic shape memory alloys , 2020 .

[16]  Hongwei Liu,et al.  Influence of hydrostatic pressure on martensitic transformation and strain behavior for Co52V29+xGa19−x Heusler alloys , 2020, Journal of Materials Science.

[17]  Hongwei Liu,et al.  A large barocaloric effect associated with paramagnetic martensitic transformation in Co50Fe2.5V31.5Ga16 quaternary Heusler alloy , 2020 .

[18]  M. Imran,et al.  Enhancing the Elastocaloric Cooling Stability of NiFeGa Alloys via Introducing Pores , 2020, Advanced Engineering Materials.

[19]  Xi Li,et al.  Giant elastocaloric effect in a Mn-rich Ni44Mn46Sn10 directionally solidified alloy , 2020 .

[20]  C. Esling,et al.  Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni–Mn–Ti alloy: Experimental and ab-initio studies , 2019 .

[21]  C. Esling,et al.  Correlation between microstructure and martensitic transformation, mechanical properties and elastocaloric effect in Ni–Mn-based alloys , 2019, Intermetallics.

[22]  Youwei Du,et al.  Enhanced elastocaloric effect and mechanical properties of Fe-doped Ni–Mn–Al ferromagnetic shape memory alloys , 2019, Intermetallics.

[23]  Xi Li,et al.  Influence of austenite ferromagnetism on the elastocaloric effect in a Ni44.9Co4.9Mn36.9In13.3 metamagnetic shape memory alloy , 2019, Applied Physics Letters.

[24]  X. Moya,et al.  Giant and Reversible Inverse Barocaloric Effects near Room Temperature in Ferromagnetic MnCoGeB0.03 , 2019, Advanced materials.

[25]  M. Ye,et al.  Structure and Multifunctional Properties of Co50V33Ga16Sb1 Alloy , 2019, JOM.

[26]  L. Mañosa,et al.  Colossal Elastocaloric Effect in Ferroelastic Ni-Mn-Ti Alloys. , 2019, Physical review letters.

[27]  Xi Li,et al.  Large elastocaloric effect driven by stress-induced two-step structural transformation in a directionally solidified Ni55Mn18Ga27 alloy , 2019, Scripta Materialia.

[28]  Wei Sun,et al.  Orientation dependent elastocaloric effect in directionally solidified Ni-Mn-Sn alloys , 2019, Scripta Materialia.

[29]  Xi Li,et al.  Large elastocaloric effect in a polycrystalline Ni45.7Co4.2Mn37.3Sb12.8 alloy with low transformation strain , 2019, Scripta Materialia.

[30]  Hong Chen,et al.  Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement , 2019, Scripta Materialia.

[31]  Y. Shen,et al.  Elastocaloric effect of all-d-metal Heusler NiMnTi(Co) magnetic shape memory alloys by digital image correlation and infrared thermography , 2019, Applied Physics Letters.

[32]  Pan Wang,et al.  Enhanced elastocaloric effect and cycle stability in B and Cu co-doping Ni-Mn-In polycrystals , 2019, Applied Physics Letters.

[33]  L. Zuo,et al.  Giant low-field magnetocaloric effect in a textured Ni45.3Co5.1Mn36.1In13.5 alloy , 2018, Scripta Materialia.

[34]  Yang Ren,et al.  Simultaneously achieved large reversible elastocaloric and magnetocaloric effects and their coupling in a magnetic shape memory alloy , 2018 .

[35]  Changqin Liu,et al.  Realization of metamagnetic martensitic transformation with multifunctional properties in Co50V34Ga16 Heusler alloy , 2018 .

[36]  L. Geng,et al.  Orientation dependent cyclic stability of the elastocaloric effect in textured Ni-Mn-Ga alloys , 2018 .

[37]  Min Zhou,et al.  Elastocaloric effect and mechanical behavior for NiTi shape memory alloys , 2018, Chinese Physics B.

[38]  Xijia He,et al.  A large barocaloric effect and its reversible behavior with an enhanced relative volume change for Ni42.3Co7.9Mn38.8Sn11 Heusler alloy , 2018 .

[39]  X. Ren,et al.  Combination of conventional elastocaloric and magnetocaloric effects in a Co37Ni35Al28 ferromagnetic shape memory alloy , 2018 .

[40]  Xijia He,et al.  Enhanced barocaloric effect produced by hydrostatic pressure-induced martensitic transformation for Ni44.6Co5.5Mn35.5In14.4 Heusler alloy , 2018 .

[41]  Yanghoo Kim,et al.  Elastocaloric effect in polycrystalline Ni50Ti45.3V4.7 shape memory alloy , 2018 .

[42]  Xingjun Liu,et al.  Investigation of half-metallic ferromagnetism in Heusler compounds Co 2 VZ (Z = Ga, Ge, As, Se) , 2017 .

[43]  Wen-ru Sun,et al.  Directional solidification and elastocaloric effect in a Ni45Mn44Sn11 magnetic shape memory alloy , 2017 .

[44]  Rui Li,et al.  Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys , 2017 .

[45]  Wen-ru Sun,et al.  Giant caloric effect of low-hysteresis metamagnetic shape memory alloys with exceptional cyclic functionality , 2017 .

[46]  Jian Liu,et al.  Elastocaloric effect and superelastic stability in Ni–Mn–In–Co polycrystalline Heusler alloys: hysteresis and strain-rate effects , 2017, Scientific Reports.

[47]  Jian Liu,et al.  Combined caloric effects in a multiferroic Ni–Mn–Ga alloy with broad refrigeration temperature region , 2017 .

[48]  Jianfei Sun,et al.  Magnetocaloric effect with low magnetic hysteresis loss in ferromagnetic Ni-Mn-Sb-Si alloys , 2017 .

[49]  Yandong Wang,et al.  Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys , 2017 .

[50]  R. Kainuma,et al.  Martensitic transformation and phase diagram in ternary Co-V-Ga Heusler alloys , 2017 .

[51]  Wen-ru Sun,et al.  An 8 K elastocaloric temperature change induced by 1.3% transformation strain in Ni44Mn45 - xSn11Cux alloys , 2017 .

[52]  Chengbao Jiang,et al.  Large room-temperature elastocaloric effect of Ni57Mn18Ga21In4 alloy undergoing a magnetostructural coupling transition , 2017 .

[53]  W. Cai,et al.  Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping , 2017, Scientific Reports.

[54]  Wen-ru Sun,et al.  Elastocaloric effect in a Co50Ni20Ga30 single crystal , 2017 .

[55]  Thomas E. Pillsbury,et al.  Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  Yang Li,et al.  Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy , 2016, Scientific Reports.

[57]  H. Suo,et al.  Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy , 2015 .

[58]  Jian Liu,et al.  Elastocaloric effect in Ni50Fe19Ga27Co4 single crystals , 2015 .

[59]  A. Schütze,et al.  Thermal Stabilization of NiTiCuV Shape Memory Alloys: Observations During Elastocaloric Training , 2015, Shape Memory and Superelasticity.

[60]  Jian Liu,et al.  Elastocaloric effect in Ni45Mn36.4In13.6Co5 metamagnetic shape memory alloys under mechanical cycling , 2015 .

[61]  Wen-ru Sun,et al.  Large and reversible elastocaloric effect in dual-phase Ni54Fe19Ga27 superelastic alloys , 2015 .

[62]  Nini Pryds,et al.  Elastocaloric effect of Ni-Ti wire for application in a cooling device , 2015 .

[63]  Jian-Xin Xie,et al.  The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys , 2014 .

[64]  Jian Liu,et al.  Elastocaloric effect in a textured polycrystalline Ni-Mn-In-Co metamagnetic shape memory alloy , 2014 .

[65]  L. Mañosa,et al.  Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys , 2013 .

[66]  A. Pathak,et al.  Magnetocaloric effect and multifunctional properties of Ni–Mn-based Heusler alloys , 2012 .

[67]  Eckhard Quandt,et al.  High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films , 2012 .

[68]  M. Wuttig,et al.  Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires , 2012 .

[69]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[70]  K. Yao,et al.  First-principles study on the half-metallicity of full-Heusler alloy Co2VGa (111) surface , 2012 .

[71]  M. Acet,et al.  Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. , 2011, Nature communications.

[72]  T. Wada,et al.  Magnetization Process near the Curie Temperature of a Ferromagnetic Heusler Alloy Co2VGa , 2011 .

[73]  M. Shirai,et al.  Magnetic properties of the half-metallic Heusler alloys Co2VAl and Co2VGa under pressure , 2010 .

[74]  Mehmet Acet,et al.  Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. , 2010, Nature materials.

[75]  K. Ishida,et al.  Magnetic field-induced reverse transformation in B2-type NiCoMnAl shape memory alloys , 2008 .