Applications of ZnO in organic and hybrid solar cells

As an n-type inorganic semiconductor, ZnO has been widely used in organic solar cells (OSCs) and hybrid solar cells (HSCs) due to its salient characteristics such as low cost, easy synthesis, non-toxicity, high stability, and good optoelectronic properties. This article reviews the applications of ZnO in solar cells, including ZnO/organic HSCs, and OSCs with ZnO acting as electrode buffer layers or transparent electrodes. For ZnO/organic HSCs, ZnO serves as the electron acceptor material, while organic semiconductors act as electron donor materials. For the buffer layers or electrode applications, ZnO is used as an electron collection and hole blocking material where its structure plays an important role in the determination of the device performance (e.g., power conversion efficiency, lifetime, stability, etc.). Special emphasis goes to the device performance of OSCs and HSCs, which depends not only on the active materials and the device configurations, but also on the structural characteristics of the ZnO buffer layer. Finally, we briefly give an analysis on the opportunities and challenges for this promising semiconductor in OSCs and HSCs.

[1]  K. Yoshino,et al.  Semitransparent organic photovoltaic cell with carbon nanotube-sheet anodes and Ga-doped ZnO cathodes , 2009 .

[2]  Yong Cao,et al.  Polymer solar cells: Recent development and possible routes for improvement in the performance , 2010 .

[3]  Edward H. Sargent,et al.  Aluminum doped zinc oxide for organic photovoltaics , 2009 .

[4]  M. Ozaki,et al.  Fabrication of oriented ZnO nanopillar self-assemblies and their application for photovoltaic devices , 2008, Nanotechnology.

[5]  Alex K.-Y. Jen,et al.  Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells , 2009 .

[6]  Michael D. McGehee,et al.  Polymer-based solar cells , 2007 .

[7]  Jenny Nelson,et al.  Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. , 2006, The journal of physical chemistry. B.

[8]  Alex K.-Y. Jen,et al.  Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes , 2009 .

[9]  Yoshitaka Kawahara,et al.  Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy. , 2009, ACS applied materials & interfaces.

[10]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[11]  A. Heeger,et al.  Infiltration of Regioregular Poly[2,2′‐(3‐hexylthiopene)] into Random Nanocrystalline TiO2 Networks , 2005 .

[12]  Jing-Shun Huang,et al.  Performance enhancement of organic/inorganic hybrid solar cells by improving the optical absorption of polymer , 2009, Organic Photonics + Electronics.

[13]  Yongfang Li,et al.  6.5% Efficiency of Polymer Solar Cells Based on poly(3‐hexylthiophene) and Indene‐C60 Bisadduct by Device Optimization , 2010, Advanced materials.

[14]  Valentin D. Mihailetchi,et al.  Charge Transport and Photocurrent Generation in Poly(3‐hexylthiophene): Methanofullerene Bulk‐Heterojunction Solar Cells , 2006 .

[15]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[16]  T. Pauporté,et al.  From nanowires to hierarchical structures of template-free electrodeposited ZnO for efficient dye-sensitized solar cells , 2011 .

[17]  Jenny Nelson,et al.  Hybrid polymer-metal oxide thin films for photovoltaic applications{ , 2007 .

[18]  G. Sharma,et al.  Charge generation and photovoltaic properties of hybrid solar cells based on ZnO and copper phthalocyanines (CuPc) , 2006 .

[19]  Kazuhito Hashimoto,et al.  Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices , 2007 .

[20]  W. E. Collins,et al.  Increased short circuit current in organic photovoltaic using high-surface area electrode based on ZnO nanowires decorated with CdTe quantum dots , 2009, Nanotechnology.

[21]  Alex K.-Y. Jen,et al.  Polymer Solar Cells That Use Self‐Assembled‐Monolayer‐ Modified ZnO/Metals as Cathodes , 2008 .

[22]  M. Ozaki,et al.  Study on the bulk junction type organic solar cells with double zinc oxide layer , 2009 .

[23]  M. Antonietti,et al.  Polymer-controlled crystallization of zinc oxide hexagonal nanorings and disks. , 2006, The journal of physical chemistry. B.

[24]  Howard Wang,et al.  Vertically aligned ZnO nanodisks and their uses in bulk heterojunction solar cells , 2010 .

[25]  Arun Majumdar,et al.  Design of Nanostructured Heterojunction Polymer Photovoltaic Devices , 2003 .

[26]  Mm Martijn Wienk,et al.  The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study , 2007 .

[27]  Zhong Lin Wang Nanostructures of zinc oxide , 2004 .

[28]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[29]  J. Nelson,et al.  Hybrid bulk heterojunction solar cells based on p3ht and porphyrin-modified zno nanorods , 2010 .

[30]  J. Fréchet,et al.  High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives , 2007 .

[31]  Han‐Ki Kim,et al.  Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics , 2009 .

[32]  Michael D. McGehee,et al.  Nanostructured Organic—Inorganic Hybrid Solar Cells , 2009 .

[33]  Jing-Shun Huang,et al.  Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods , 2009 .

[34]  Stephen C. Moratti,et al.  EXCITON DIFFUSION AND DISSOCIATION IN A POLY(P-PHENYLENEVINYLENE)/C60 HETEROJUNCTION PHOTOVOLTAIC CELL , 1996 .

[35]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[36]  J. Narayan,et al.  Electrical properties of transparent and conducting Ga doped ZnO , 2006 .

[37]  K. Yoshino,et al.  Effect of ZnO layer on characteristics of conducting polymer/C60 photovoltaic cell , 2004 .

[38]  Yanming Sun,et al.  Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer , 2011, Advanced materials.

[39]  David P. Norton,et al.  Recent progress in processing and properties of ZnO , 2003 .

[40]  Sungeun Park,et al.  Effects of intrinsic ZnO buffer layer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode , 2009 .

[41]  M. McLachlan,et al.  Inverted organic photovoltaic devices with high efficiency and stability based on metal oxide charge extraction layers , 2011 .

[42]  Chunhui Huang,et al.  Inverted photovoltaic device based on ZnO and organic small molecule heterojunction , 2009 .

[43]  Chunhui Huang,et al.  Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires , 2009 .

[44]  S. Sharma,et al.  Photovoltaic devices based on PPHT: ZnO and dye-sensitized PPHT: ZnO thin films , 2008 .

[45]  H. Demir,et al.  Improved Inverted Organic Solar Cells With a Sol–Gel Derived Indium-Doped Zinc Oxide Buffer Layer , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[46]  Hsin-Ming Cheng,et al.  High-efficiency metal-free organic-dye-sensitized solar cells with hierarchical ZnO photoelectrode , 2010 .

[47]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[48]  Hsiu-Fen Lin,et al.  Efficient electron transport in tetrapod-like ZnO metal-free dye-sensitized solar cells , 2009 .

[49]  Pei-Jung Li,et al.  Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. , 2010, Journal of the American Chemical Society.

[50]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[51]  L. Etgar,et al.  An efficient DSSC based on ZnO nanowire photo-anodes and a new D-π-A organic dye , 2011 .

[52]  D. Cahen,et al.  Molecular modification of an ionic semiconductor–metal interface: ZnO/molecule/Au diodes , 2003 .

[53]  Fan Wu,et al.  Device Performance Correlated with Structural Properties of Vertically Aligned Nanorod Arrays in Polymer/ZnO Solar Cells , 2010 .

[54]  S. Shaheen,et al.  Band‐Offset Engineering for Enhanced Open‐Circuit Voltage in Polymer–Oxide Hybrid Solar Cells , 2007 .

[55]  Chun-Wei Chen,et al.  The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells , 2009 .

[56]  Masanori Ozaki,et al.  Fabrication of organic photovoltaic cells with double-layer ZnO structure , 2009 .

[57]  Peidong Yang,et al.  General route to vertical ZnO nanowire arrays using textured ZnO seeds. , 2005, Nano letters.

[58]  M. Ozaki,et al.  Fabrication of ZnO Nanopillars and Their Application to Organic Photovoltaic Cells Based on Conducting Polymer and Fullerene , 2010 .

[59]  H. Boyen,et al.  Towards Efficient Hybrid Solar Cells Based on Fully Polymer Infiltrated ZnO Nanorod Arrays , 2011, Advanced materials.

[60]  Kazuhito Hashimoto,et al.  Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer , 2008 .

[61]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[62]  Chin-Hsiang Chang,et al.  Morphological evolution of the poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester, oxidation of the silver electrode, and their influences on the performance of inverted polymer solar cells with a sol–gel derived zinc oxide electron selective layer , 2010 .

[63]  Xingzhong Zhao,et al.  Bulk heterojunction solar cells with NiO hole transporting layer based on AZO anode , 2010 .

[64]  John E. Anthony,et al.  Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment , 2011 .

[65]  Ching-Fuh Lin,et al.  Sol–gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells , 2010 .

[66]  Rattanavoravipa Thitima,et al.  Efficient electron transfers in ZnO nanorod arrays with N719 dye for hybrid solar cells , 2009 .

[67]  Junpeng Liu,et al.  Charge transport in flexible solar cells based on conjugated polymer and ZnO nanoparticulate thin films , 2011 .

[68]  Todd C. Monson,et al.  Photocurrent Enhancement in Polythiophene‐ and Alkanethiol‐Modified ZnO Solar Cells , 2008 .

[69]  Yang Yang,et al.  ZnO nano-ridge structure and its application in inverted polymer solar cell , 2009 .

[70]  F. Hsu,et al.  The effect of C60 on the ZnO-nanorod surface in organic–inorganic hybrid photovoltaics , 2011 .

[71]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[72]  Volker Schmidt,et al.  The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. , 2009, Nature materials.

[73]  Litao Sun,et al.  Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells , 2011 .

[74]  Yang Yang,et al.  A Metal‐Oxide Interconnection Layer for Polymer Tandem Solar Cells with an Inverted Architecture , 2011, Advanced materials.

[75]  Peidong Yang,et al.  ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells , 2007 .

[76]  L. Jan Anton Koster,et al.  Device Operation of Conjugated Polymer/Zinc Oxide Bulk Heterojunction Solar Cells , 2007 .

[77]  Han‐Ki Kim,et al.  Effects of deposition temperature on characteristics of Ga-doped ZnO film prepared by highly efficient cylindrical rotating magnetron sputtering for organic solar cells , 2011 .

[78]  Hong Ma,et al.  Effect of Chemical Modification of Fullerene-Based Self-Assembled Monolayers on the Performance of Inverted Polymer Solar Cells , 2010 .

[79]  K. Yoshino,et al.  Ga-Doped ZnO Film as a Transparent Electrode for Phthalocyanine/Perylene Heterojunction Solar Cell , 2008 .

[80]  K. Yoshino,et al.  Improvement of characteristics on polymer photovoltaic cells composed of conducting polymer - fullerene systems , 2005 .

[81]  J. Bernède,et al.  ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells , 2009 .

[82]  M. Ozaki,et al.  Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers , 2010, Materials.

[83]  Thomas Heiser,et al.  Room temperature ZnO growth by rf magnetron sputtering on top of photoactive P3HT: PCBM for organic solar cells , 2011 .

[84]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[85]  N. T. Harrison,et al.  Electronic excitations in luminescent conjugated polymers , 1997 .

[86]  Youn-Sik Lee,et al.  Preparation and characterization of nano-scale ZnO as a buffer layer for inkjet printing of silver cathode in polymer solar cells , 2008 .

[87]  D. Vanmaekelbergh,et al.  Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling. , 2002, Physical review letters.

[88]  Dukhyun Choi,et al.  Enhanced Power Conversion Efficiency of Inverted Organic Solar Cells with a Ga-Doped ZnO Nanostructured Thin Film Prepared Using Aqueous Solution , 2010 .

[89]  N. Koratkar,et al.  Metal oxide buffer layer for improving performance of polymer solar cells , 2010 .

[90]  A. Boukai,et al.  Oligo- and polythiophene/ZnO hybrid nanowire solar cells. , 2010, Nano letters (Print).

[91]  Donal D. C. Bradley,et al.  Hybrid polymer/metal oxide solar cells based on ZnO columnar structures , 2006 .

[92]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[93]  A. Jen,et al.  Solution processed inverted tandem polymer solar cells with self-assembled monolayer modified interfacial layers , 2010 .

[94]  Andrea Bernardi,et al.  The role of buffer layers in polymer solar cells , 2011 .

[95]  Alex K.-Y. Jen,et al.  Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells , 2008 .

[96]  Yang Yang,et al.  Interface investigation and engineering – achieving high performance polymer photovoltaic devices , 2010 .

[97]  Alex K.-Y. Jen,et al.  Interface Engineering for Organic Electronics , 2010, Advanced Functional Materials.

[98]  Yongfang Li,et al.  Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. , 2010, Journal of the American Chemical Society.

[99]  N. Greenham,et al.  Simple approach to hybrid polymer/porous metal oxide solar cells from solution-processed Zn0 nanocrystal , 2010 .

[100]  D. Ginley,et al.  Control of charge separation by electric field manipulation in polymer‐oxide hybrid organic photovoltaic bilayer devices , 2010 .

[101]  Andreas Kornowski,et al.  Self-assembly of ZnO: from nanodots to nanorods. , 2002, Angewandte Chemie.

[102]  J. Nelson,et al.  Control of Photocurrent Generation in Polymer/ZnO Nanorod Solar Cells by Using a Solution-Processed TiO2 Overlayer , 2010 .

[103]  Hong Ma,et al.  High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer , 2008 .

[104]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[105]  Optimization of inverted bulk heterojunction polymer solar cells , 2010 .

[106]  W. Su,et al.  Polymer/Metal Oxide Nanocrystals Hybrid Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[107]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[108]  Ching-Fuh Lin,et al.  Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells , 2009 .

[109]  R. Gordon Criteria for Choosing Transparent Conductors , 2000 .

[110]  Alex K.-Y. Jen,et al.  A Review on the Development of the Inverted Polymer Solar Cell Architecture , 2010 .

[111]  Xiaoniu Yang,et al.  Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. , 2005, The journal of physical chemistry. B.

[112]  San-Yuan Chen,et al.  Improvement in photovoltaic performance for hybrid P3HT/elongated CdS nanocrystals solar cells with F-doped SnO2 arrays , 2010 .

[113]  Wje Waldo Beek,et al.  Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles , 2006 .

[114]  Mm Martijn Wienk,et al.  Hybrid Solar Cells Using a Zinc Oxide Precursor and a Conjugated Polymer , 2005 .

[115]  A. Ng,et al.  ZnO nanostructures for optoelectronics: Material properties and device applications , 2010 .

[116]  Shixin Wu,et al.  Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. , 2010, Small.

[117]  Young Tae Kim,et al.  Multifunctional SWCNT‐ZnO Nanocomposites for Enhancing Performance and Stability of Organic Solar Cells , 2011, Advanced materials.

[118]  Juan Bisquert,et al.  Role of ZnO Electron-Selective Layers in Regular and Inverted Bulk Heterojunction Solar Cells , 2011 .

[119]  K. Hashimoto,et al.  Charge Separation Interfaces in Polymer Photovoltaic Devices Hybridized with ZnO Nanorod Arrays , 2008 .

[120]  R. Friend,et al.  Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices , 2010 .

[121]  X. W. Sun,et al.  Efficient charge collection with sol–gel derived colloidal ZnO thin film in photovoltaic devices , 2009 .

[122]  Sheng-Fu Horng,et al.  Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer , 2010 .

[123]  Yakup Hames,et al.  Electrochemically grown ZnO nanorods for hybrid solar cell applications , 2010 .

[124]  Jurjen Wildeman,et al.  Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylene vinylene) derivatives , 2005 .

[125]  David C. Look,et al.  Recent Advances in ZnO Materials and Devices , 2001 .

[126]  L. Jan Anton Koster,et al.  Hybrid Polymer Solar Cells from Highly Reactive Diethylzinc: MDMO–PPV versus P3HT , 2007 .

[127]  Yanzhong Hao,et al.  Efficient Semiconductor-Sensitized Solar Cells Based on Poly(3-hexylthiophene)@CdSe@ZnO Core−Shell Nanorod Arrays , 2010 .

[128]  A. Jen,et al.  Optimization of Active Layer and Anode Electrode for High-Performance Inverted Bulk-Heterojunction Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[129]  Reuben T. Collins,et al.  Hybrid photovoltaic devices of polymer and ZnO nanofiber composites , 2006 .

[130]  S. Shaheen,et al.  Effect of ZnO Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells , 2008 .

[131]  John R. Reynolds,et al.  Dithienogermole as a fused electron donor in bulk heterojunction solar cells. , 2011, Journal of the American Chemical Society.

[132]  E. Fortunato,et al.  Transparent Conducting Oxides for Photovoltaics , 2007 .

[133]  Yunfei Zhou,et al.  Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers , 2010 .

[134]  Daniel Hofstetter,et al.  ZnO Devices and Applications: A Review of Current Status and Future Prospects , 2010, Proceedings of the IEEE.

[135]  S. Shaheen,et al.  The Effect of Atmosphere and ZnO Morphology on the Performance of Hybrid Poly(3-hexylthiophene)/ZnO Nanofiber Photovoltaic Devices , 2007 .

[136]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[137]  Monica Lira-Cantu,et al.  Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review , 2009 .

[138]  Kwanghee Lee,et al.  Introduction to the Issue on Next-Generation Organic and Hybrid Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[139]  M. Welland,et al.  The backing layer dependence of open circuit voltage in ZnO/polymer composite solar cells , 2008 .

[140]  Guo-Qiang Lo,et al.  An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer , 2008 .

[141]  Junbiao Peng,et al.  Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure , 2010 .

[142]  M. Turner,et al.  Nanoparticle-polymer photovoltaic cells. , 2008, Advances in colloid and interface science.

[143]  Sean E. Shaheen,et al.  Effect of Polymer Processing on the Performance of Poly(3-hexylthiophene)/ZnO Nanorod Photovoltaic Devices , 2007 .

[144]  W. J. Beek,et al.  Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer , 2004 .

[145]  Xiong Gong,et al.  Solution-processed cross-linkable hole selective layer for polymer solar cells in the inverted structure , 2010 .

[146]  Jan C Hummelen,et al.  Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. , 2005, The journal of physical chemistry. A.

[147]  Peidong Yang,et al.  Low-temperature wafer-scale production of ZnO nanowire arrays. , 2003, Angewandte Chemie.

[148]  P. C. Chui,et al.  Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells , 2004 .

[149]  Yu‐Guo Guo,et al.  Highly Dispersed RuO2 Nanoparticles on Carbon Nanotubes: Facile Synthesis and Enhanced Supercapacitance Performance , 2010 .

[150]  S. Kim,et al.  Surface modification of metal oxide using ionic liquid molecules in hybrid organic–inorganic optoelectronic devices , 2011 .