Neural-Network- Based Modeling of Electric Discharge Machining Process

The purpose of this article is to present the application of neural network for modeling electric discharge machining process. This article highlights the various aspects of neural network modeling with specific regard to EDM process. Experimental data has been used to train the neural network by back-propagation. Prediction ability of the trained model has been verified experimentally and the reported results indicate that proposed neural network model can successfully predict the output for a given set of input.

[1]  Pei-Jen Wang,et al.  Semi-empirical model of surface finish on electrical discharge machining , 2001 .

[2]  H. Zarepour,et al.  Statistical analysis on electrode wear in EDM of tool steel DIN 1.2714 used in forging dies , 2007 .

[3]  Vishal S. Sharma,et al.  Estimation of cutting forces and surface roughness for hard turning using neural networks , 2008, J. Intell. Manuf..

[4]  Izabela Kutschenreiter-Praszkiewicz,et al.  Application of artificial neural network for determination of standard time in machining , 2008, J. Intell. Manuf..

[5]  James Tannock,et al.  The training of neural networks to model manufacturing processes , 2005, J. Intell. Manuf..

[6]  María José del Jesús,et al.  Evolutionary and metaheuristics based data mining , 2009, Soft Comput..

[7]  Emilio Corchado,et al.  A soft computing method for detecting lifetime building thermal insulation failures , 2010, Integr. Comput. Aided Eng..

[8]  Emilio Corchado,et al.  Soft computing models to identify typical meteorological days , 2011, Log. J. IGPL.

[9]  María José del Jesús,et al.  KEEL: a software tool to assess evolutionary algorithms for data mining problems , 2008, Soft Comput..

[10]  Trevor A Spedding,et al.  Parametric optimization and surface characterization of wire electrical discharge machining process , 1997 .

[11]  Pei-Jen Wang,et al.  Comparisons of neural network models on material removal rate in electrical discharge machining , 2001 .

[12]  R.M.D. Mesquita,et al.  An experimental study on electro-discharge machining and polishing of high strength copper–beryllium alloys , 2000 .

[13]  H. K. Raval,et al.  Simulation of three-roller bending process using ANN: a parametric study , 2009, Int. J. Manuf. Res..

[14]  Stephen T. Newman,et al.  State of the art electrical discharge machining (EDM) , 2003 .

[15]  R. K. Bhoi,et al.  Artificial Neural Network Prediction of Material Removal Rate in Electro Discharge Machining , 2005 .

[16]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[17]  J. Y Kao,et al.  A neutral-network approach for the on-line monitoring of the electrical discharge machining process , 1997 .

[18]  Surjya K. Pal,et al.  Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite , 2008 .

[19]  George P. Petropoulos,et al.  Modeling of surface finish in electro-discharge machining based upon statistical multi-parameter analysis , 2004 .

[20]  Godwin J. Udo,et al.  Neural networks applications in manufacturing processes , 1992 .

[21]  Vincenzo Tagliaferri,et al.  Artificial neural networks to optimize the extrusion of an aluminium alloy , 2010, J. Intell. Manuf..

[22]  S. H. Huang,et al.  Artificial neural networks in manufacturing: concepts, applications, and perspectives , 1994 .

[23]  S. H. Huang,et al.  Applications of neural networks in manufacturing: a state-of-the-art survey , 1995 .

[24]  Yash P. Gupta,et al.  Applications of neural networks in manufacturing management systems , 1994 .