Traveling Waves in Discrete Periodic Media for Bistable Dynamics

This paper is concerned with the existence, uniqueness, and global stability of traveling waves in discrete periodic media for a system of ordinary differential equations exhibiting bistable dynamics. The main tools used to prove the uniqueness and asymptotic stability of traveling waves are the comparison principle, spectrum analysis, and constructions of super/subsolutions. To prove the existence of traveling waves, the system is converted to an integral equation which is common in the study of monostable dynamics but quite rare in the study of bistable dynamics. The main purpose of this paper is to introduce a general framework for the study of traveling waves in discrete periodic media.

[1]  John Mallet-Paret,et al.  The Global Structure of Traveling Waves in Spatially Discrete Dynamical Systems , 1999 .

[2]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model: II—biological invasions and pulsating travelling fronts , 2005 .

[3]  Peter W. Bates,et al.  Periodic traveling waves and locating oscillating patterns in multidimensional domains , 1999 .

[4]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model : I - Influence of periodic heterogeneous environment on species persistence. , 2005 .

[5]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[6]  M. Freidlin Limit Theorems for Large Deviations and Reaction-Diffusion Equations , 1985 .

[7]  L. Peletier,et al.  Nonlinear diffusion in population genetics , 1977 .

[8]  G. Ermentrout,et al.  Existence and uniqueness of travelling waves for a neural network , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  Jack Xin,et al.  Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media , 1993 .

[10]  N. Shigesada,et al.  Biological Invasions: Theory and Practice , 1997 .

[11]  Jack Xin,et al.  Front Propagation in Heterogeneous Media , 2000, SIAM Rev..

[12]  Alexander Pankov,et al.  Travelling waves in lattice dynamical systems , 2000 .

[13]  Xinfu Chen,et al.  Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics , 2003 .

[14]  Shui-Nee Chow,et al.  Traveling Waves in Lattice Dynamical Systems , 1998 .

[15]  Xinfu Chen,et al.  Traveling Waves of Bistable Dynamics on a Lattice , 2003, SIAM J. Math. Anal..

[16]  Koichi Uchiyama,et al.  The behavior of solutions of some non-linear diffusion equations for large time , 1977 .

[17]  D. Aronson,et al.  Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation , 1975 .

[18]  B. Zinner,et al.  Traveling wavefronts for the discrete Fisher's equation , 1993 .

[19]  Xinfu Chen,et al.  Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations , 1997, Advances in Differential Equations.

[20]  H. J. K. Moet A Note on the Asymptotic Behavior of Solutions of the KPP Equation , 1979 .

[21]  Hans F. Weinberger,et al.  On spreading speeds and traveling waves for growth and migration models in a periodic habitat , 2002, Journal of mathematical biology.

[22]  B. Zinner,et al.  Existence of traveling wavefront solutions for the discrete Nagumo equation , 1992 .

[23]  M. Bramson Convergence of solutions of the Kolmogorov equation to travelling waves , 1983 .

[24]  Paul C. Fife,et al.  A phase plane discussion of convergence to travelling fronts for nonlinear diffusion , 1981 .

[25]  B. Zinner,et al.  Stability of traveling wavefronts for the discrete Nagumo equation , 1991 .

[26]  François Hamel,et al.  The speed of propagation for KPP type problems. I: Periodic framework , 2005 .

[27]  Xinfu Chen,et al.  Existence and Asymptotic Stability of Traveling Waves of Discrete Quasilinear Monostable Equations , 2002 .

[28]  Jack Xin,et al.  Existence of planar flame fronts in convective-diffusive periodic media , 1992 .

[29]  Xingfu Zou,et al.  Asymptotic and Periodic Boundary Value Problems of Mixed FDEs and Wave Solutions of Lattice Differential Equations , 1997 .

[30]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[31]  X. Xin,et al.  Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity , 1991 .

[32]  N. Shigesada,et al.  Traveling periodic waves in heterogeneous environments , 1986 .

[33]  M. Kreĭn,et al.  Linear operators leaving invariant a cone in a Banach space , 1950 .

[34]  Yoshinori Kametaka,et al.  On the nonlinear diffusion equation of Kolmogorov-Petrovskii-Piskunov type , 1975 .

[35]  Jong-Shenq Guo,et al.  Front propagation for discrete periodic monostable equations , 2006 .

[36]  J. Xin Existence of multidimensional traveling waves in the transport of reactive solutes through periodic porous media , 1994 .

[37]  John Mallet-Paret,et al.  The Fredholm Alternative for Functional Differential Equations of Mixed Type , 1999 .

[38]  Bertram Zinner,et al.  EXISTENCE OF TRAVELING WAVES FOR REACTION DIFFUSION EQUATIONS OF FISHER TYPE IN PERIODIC MEDIA , 1995 .

[39]  Hans F. Weinberger,et al.  Long-Time Behavior of a Class of Biological Models , 1982 .

[40]  Wenxian Shen,et al.  Traveling Waves in Time Almost Periodic Structures Governed by Bistable Nonlinearities: II. Existence , 1999 .

[41]  David H. Sattinger,et al.  On the stability of waves of nonlinear parabolic systems , 1976 .

[42]  J. McLeod,et al.  The approach of solutions of nonlinear diffusion equations to travelling front solutions , 1977 .

[43]  Xinfu Chen,et al.  Uniqueness and Asymptotics of Traveling Waves of Monostable Dynamics on Lattices , 2006, SIAM J. Math. Anal..

[44]  Wenxian Shen,et al.  Traveling Waves in Time Almost Periodic Structures Governed by Bistable Nonlinearities: I. Stability and Uniqueness , 1999 .

[45]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[46]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .