Efficient Dynamic Floor Field Methods for Microscopic Pedestrian Crowd Simulations

Floor field methods are one of the most popular medium-scale navigation concepts in microscopic pedestrian simulators. Recently introduced dynamic floor field methods have significantly increased the realism of such simulations, i.e. agreement of spatio-temporal patterns of pedestrian densities in simulations with realworld observations. These methods update floor fields continuously taking other pedestrians into account. This implies that computational times are mainly determined by the calculation of floor fields. In this work, we propose a new computational approach for the construction of dynamic floor fields. The approach is based on the one hand on adaptive grid concepts and on the other hand on a directed calculation of floor fields, i.e. the calculation is restricted to the domain of interest. Combining both techniques the computational complexity can be reduced by a factor of 10 as demonstrated by several realistic scenarios. Thus on-line simulations, a requirement of many applications, are possible for moderate realistic scenarios. AMS subject classifications: 52B10, 65D18, 68U05, 68U07

[1]  Christophe Chalons Numerical Approximation of a Macroscopic Model of Pedestrian Flows , 2007, SIAM J. Sci. Comput..

[2]  Rainald Löhner,et al.  On the modeling of pedestrian motion , 2010 .

[3]  Daniel R. Parisi,et al.  A modification of the Social Force Model can reproduce experimental data of pedestrian flows in normal conditions , 2009 .

[4]  Laurent D. Cohen,et al.  Heuristically Driven Front Propagation for Geodesic Paths Extraction , 2005, VLSM.

[5]  V. Coscia,et al.  FIRST-ORDER MACROSCOPIC MODELLING OF HUMAN CROWD DYNAMICS , 2008 .

[6]  Steven M. LaValle,et al.  Simplicial dijkstra and A* algorithms for optimal feedback planning , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Armin Seyfried,et al.  Analysis of bottleneck motion using Voronoi diagrams , 2010, 1003.5465.

[8]  Hubert Klüpfel,et al.  Evacuation Dynamics: Empirical Results, Modeling and Applications , 2009, Encyclopedia of Complexity and Systems Science.

[9]  Shing Chung Josh Wong,et al.  An efficient discontinuous Galerkin method on triangular meshes for a pedestrian flow model , 2008 .

[10]  J. Sethian,et al.  Fast methods for the Eikonal and related Hamilton- Jacobi equations on unstructured meshes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Colombo,et al.  Pedestrian flows and non‐classical shocks , 2005 .

[12]  Yan Pailhas,et al.  Path Planning for Autonomous Underwater Vehicles , 2007, IEEE Transactions on Robotics.

[13]  Chi-Wang Shu,et al.  Dynamic continuum pedestrian flow model with memory effect. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Mark J. Embrechts,et al.  Cellular automata modeling of pedestrian movements , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[16]  Dirk Helbing A Fluid-Dynamic Model for the Movement of Pedestrians , 1992, Complex Syst..

[17]  S. Dai,et al.  Centrifugal force model for pedestrian dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Ulrich Weidmann,et al.  Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs, Literaturauswertung , 1992 .

[19]  Dirk Helbing,et al.  Pedestrian, Crowd and Evacuation Dynamics , 2013, Encyclopedia of Complexity and Systems Science.

[20]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[21]  P. Gács,et al.  Algorithms , 1992 .

[22]  Andreas Schadschneider,et al.  Extended Floor Field CA Model for Evacuation Dynamics , 2004, IEICE Trans. Inf. Syst..

[23]  José Rogan,et al.  Cellular automaton model for evacuation process with obstacles , 2007 .

[24]  Laurent D. Cohen,et al.  Heuristically Driven Front Propagation for Fast Geodesic Extraction , 2008 .

[25]  Vladimir D. Liseikin,et al.  Grid Generation Methods , 1999 .

[26]  Mohcine Chraibi,et al.  Force-based models of pedestrian dynamics , 2011, Networks Heterog. Media.

[27]  F. Santambrogio,et al.  A MACROSCOPIC CROWD MOTION MODEL OF GRADIENT FLOW TYPE , 2010, 1002.0686.

[28]  Roger L. Hughes,et al.  A continuum theory for the flow of pedestrians , 2002 .

[29]  Laurent D. Cohen,et al.  Landmark-Based Geodesic Computation for Heuristically Driven Path Planning , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[30]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  Katsuhiro Nishinari,et al.  Simulation for pedestrian dynamics by real-coded cellular automata (RCA) , 2007 .

[32]  Nicola Bellomo,et al.  On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and Perspectives , 2011, SIAM Rev..

[33]  Taras I. Lakoba,et al.  Modifications of the Helbing-Molnár-Farkas-Vicsek Social Force Model for Pedestrian Evolution , 2005, Simul..

[34]  Tobias Kretz,et al.  Pedestrian traffic: on the quickest path , 2009, ArXiv.

[35]  Simone Göttlich,et al.  Evacuation dynamics influenced by spreading hazardous material , 2011, Networks Heterog. Media.

[36]  Clement Petres,et al.  Trajectory planning for autonomous underwater vehicles , 2010 .

[37]  Wolfram Klein,et al.  On modelling the influence of group formations in a crowd , 2011 .

[38]  Horst W. Hamacher,et al.  Flow location (FlowLoc) problems: dynamic network flows and location models for evacuation planning , 2013, Ann. Oper. Res..

[39]  Dirk Hartmann,et al.  Adaptive pedestrian dynamics based on geodesics , 2010 .

[40]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[41]  Sabiha Amin Wadoo,et al.  Pedestrian Dynamics: Feedback Control of Crowd Evacuation , 2008 .

[42]  Andreas Schadschneider,et al.  An Experimental Study of Pedestrian Congestions: Influence of Bottleneck Width and Length , 2009, 0911.4350.

[43]  A. Schadschneider,et al.  Simulation of pedestrian dynamics using a two dimensional cellular automaton , 2001 .

[44]  Wolfram Klein,et al.  Microscopic Pedestrian Simulations: From Passenger Exchange Times to Regional Evacuation , 2010, OR.

[45]  André Borrmann,et al.  Using a Multi-Scale Model for Simulating Pedestrian Behavior , 2014 .

[46]  Alexander Vladimirsky,et al.  Fast Two-scale Methods for Eikonal Equations , 2011, SIAM J. Sci. Comput..

[47]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[48]  Hubert Ludwig Kluepfel,et al.  A Cellular automaton model for crowd movement and egress simulation , 2003 .

[49]  Chi-Wang Shu,et al.  Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm , 2009 .

[50]  Benedetto Piccoli,et al.  Multiscale Modeling of Granular Flows with Application to Crowd Dynamics , 2010, Multiscale Model. Simul..

[51]  Yoshihiro Ishibashi,et al.  Self-Organized Phase Transitions in Cellular Automaton Models for Pedestrians , 1999 .

[52]  Mohcine Chraibi,et al.  Generalized centrifugal-force model for pedestrian dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Anthony Stentz,et al.  Using interpolation to improve path planning: The Field D* algorithm , 2006, J. Field Robotics.

[54]  Steven M. LaValle,et al.  Simplicial Dijkstra and A∗ Algorithms: From Graphs to Continuous Spaces , 2012, Adv. Robotics.

[55]  Norman I. Badler,et al.  Virtual Crowds: Methods, Simulation, and Control , 2008, Virtual Crowds: Methods, Simulation, and Control.

[56]  L. F. Henderson On the fluid mechanics of human crowd motion , 1974 .

[57]  Alexander Vladimirsky,et al.  Causal Domain Restriction for Eikonal Equations , 2013, SIAM J. Sci. Comput..

[58]  R. Hughes The flow of human crowds , 2003 .

[59]  Nicola Bellomo,et al.  On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms , 2011, Networks Heterog. Media.

[60]  Hai-Jun Huang,et al.  Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Standort Duisburg,et al.  A Cellular Automaton Model for Crowd Movement and Egress Simulation , 2003 .