Selective epitaxial growth of zinc blende-derivative on wurtzite-derivative: the case of polytypic Cu2CdSn(S(1-x)Se(x))4 nanocrystals.

Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000±2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor to adjust the reactivity difference between (0002)WZ and (000-2)WZ facets. These unique polytypic CCTSSe nanocrystals may find applications in energetic semiconducting materials for energy conversion in the future.

[1]  F. Pan,et al.  Heterovalent Substitution to Enrich Electrical Conductivity in Cu2CdSn1-xGaxSe4 Series for High Thermoelectric Performances , 2015, Scientific Reports.

[2]  Liang Wu,et al.  Energetic I–III–VI2 and I2–II–IV–VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications , 2014 .

[3]  Lin-wang Wang,et al.  Composition- and band-gap-tunable synthesis of wurtzite-derived Cu₂ZnSn(S(1-x)Se(x))₄ nanocrystals: theoretical and experimental insights. , 2013, ACS nano.

[4]  Fengjia Fan,et al.  Linearly arranged polytypic CZTSSe nanocrystals , 2012, Scientific Reports.

[5]  Fengjia Fan,et al.  Large‐Scale Colloidal Synthesis of Non‐Stoichiometric Cu2ZnSnSe4 Nanocrystals for Thermoelectric Applications , 2012, Advanced materials.

[6]  Taotao Zhuang,et al.  Cu(1.94)S nanocrystal seed mediated solution-phase growth of unique Cu2S-PbS heteronanostructures. , 2012, Chemical communications.

[7]  Shuhong Yu,et al.  One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures. , 2012, Angewandte Chemie.

[8]  W. Buhro,et al.  Morphology control of cadmium selenide nanocrystals: insights into the roles of di-n-octylphosphine oxide (DOPO) and ucid (DOPA). , 2012, Journal of the American Chemical Society.

[9]  A. Pérez‐Rodríguez,et al.  Composition Control and Thermoelectric Properties of Quaternary Chalcogenide Nanocrystals: The Case of Stannite Cu2CdSnSe4 , 2012 .

[10]  R. Brutchey,et al.  Ligand exchange on colloidal CdSe nanocrystals using thermally labile tert-butylthiol for improved photocurrent in nanocrystal films. , 2012, Journal of the American Chemical Society.

[11]  L. Manna,et al.  Birth and Growth of Octapod-Shaped Colloidal Nanocrystals Studied by Electron Tomography , 2011 .

[12]  Z. Ren,et al.  Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figure-of-merit. , 2011, Journal of the American Chemical Society.

[13]  A. Walsh,et al.  Structural diversity and electronic properties of Cu2SnX3 (X = S, Se): A first-principles investigation , 2011 .

[14]  P. Kratzer,et al.  Calculation of the diameter-dependent polytypism in GaAs nanowires from an atomic motif expansion of the formation energy , 2011 .

[15]  P. Caroff,et al.  Crystal Phases in III--V Nanowires: From Random Toward Engineered Polytypism , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Qinghua Xu,et al.  One-pot synthesis of Cu1.94S-CdS and Cu1.94S-Zn(x)Cd(1-x)S nanodisk heterostructures. , 2011, Journal of the American Chemical Society.

[17]  Zheng Xu,et al.  Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host. , 2011, Journal of the American Chemical Society.

[18]  Giovanni Bertoni,et al.  Octapod-shaped colloidal nanocrystals of cadmium chalcogenides via "one-pot" cation exchange and seeded growth. , 2010, Nano letters.

[19]  R. Brutchey,et al.  Synthesis of Metastable Wurtzite CuInSe2 Nanocrystals , 2010 .

[20]  Fuqiang Huang,et al.  Improved Thermoelectric Properties of Cu‐Doped Quaternary Chalcogenides of Cu2CdSnSe4 , 2009 .

[21]  Guglielmo Lanzani,et al.  Tetrapod-shaped colloidal nanocrystals of II-VI semiconductors prepared by seeded growth. , 2009, Journal of the American Chemical Society.

[22]  L. An,et al.  Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. , 2008, Journal of the American Chemical Society.

[23]  Gilles Patriarche,et al.  Why does wurtzite form in nanowires of III-V zinc blende semiconductors? , 2007, Physical review letters.

[24]  T. Ito,et al.  An Empirical Potential Approach to Wurtzite–Zinc-Blende Polytypism in Group III–V Semiconductor Nanowires , 2006 .

[25]  A. P. Alivisatos,et al.  First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: a model system for studying the anisotropic growth of CdSe nanocrystals. , 2005, Journal of Physical Chemistry B.

[26]  Junqing Hu,et al.  Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures. , 2004, Small.

[27]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[28]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[29]  C. Rincón,et al.  Crystal growth and structure of the semiconductor Cu2SnSe3 , 2002 .

[30]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[31]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[32]  T. Ito,et al.  Simple Criterion for Wurtzite-Zinc-Blende Polytypism in Semiconductors , 1998 .

[33]  Chris G. Van de Walle,et al.  ENERGETICS AND ELECTRONIC STRUCTURE OF STACKING FAULTS IN ALN, GAN, AND INN , 1998 .

[34]  Lee,et al.  Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. , 1994, Physical review. B, Condensed matter.

[35]  Nakayama,et al.  Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. , 1994, Physical review. B, Condensed matter.

[36]  Lu,et al.  Zinc-blende-wurtzite polytypism in semiconductors. , 1992, Physical review. B, Condensed matter.

[37]  Lu,et al.  Predictions and systematizations of the zinc-blende-wurtzite structural energies in binary octet compounds. , 1992, Physical review. B, Condensed matter.

[38]  V. Fedorov,et al.  Determination of the Point of the Zincblende‐to‐Wurtzite Structural Phase Transition in Cadmium Selenide Crystals , 1991 .

[39]  Christensen,et al.  Bonding and ionicity in semiconductors. , 1987, Physical review. B, Condensed matter.

[40]  A. Stoneham,et al.  Ionicity in solids , 1983 .

[41]  J. C. Phillips Ionicity of the Chemical Bond in Crystals , 1970 .