The mechanism of Bi nanowire growth from Bi/Co immiscible composite thin films.

Single crystalline Bi nanowires were grown by extrusion from Bi/Co thin films. The films were obtained by thermal evaporation in high vacuum. The average diameter, length and density of obtained nanowires were 100 nm, 30 microm and 6.5 x 10(5) cm(-2), respectively. The non-catalyzed self-organized process of whisker formation on the surface of immiscible composite thin film was exploited for nanowire growth. It was shown that the whiskers had formed during and after a thin film deposition. The value of residual stresses in a whole thin film coating as well as in its bismuth component was measured using X-ray diffraction technique. It was revealed that local compressive stresses, that had induced the whisker growth, had been formed by a segregation of Bi layers into Bi globules. A simple model of the whisker formation to minimize free energy in the Bi/Co system was proposed taking into account interfacial and elastic deformation energies. The obtained results can be utilized for growing of nanowires of other low-melting-point metals and semiconductors from immiscible composite thin films.