Method for the Recovery of Images in Databases of Rice Grains from Visual Content

Abstract This paper presents a method for detecting and identifying defects in polished rice grains from their scanned image using an expert system. The sample used is designed to contain specimens with the most common defects. Digital image processing techniques were used to identify different types of visible defects in rice grains that affect the quality of the sample. The proposed method has advantages over manual identification such as reduced analysis times, repeatability of results, eliminates subjectivity in identification, records and stores information, uses easily accessible equipment and has a relatively low cost.

[1]  Biagio Ciuffo,et al.  A systemic framework for sustainability assessment , 2015 .

[2]  Amelec Viloria,et al.  Greenhouse Gases Emissions and Electric Power Generation in Latin American Countries in the Period 2006-2013 , 2018, DMBD.

[3]  Amir Mosavi,et al.  A Combined Method of Image Processing and Artificial Neural Network for the Identification of 13 Iranian Rice Cultivars , 2020 .

[4]  Abbas Rohani,et al.  Soft computing-based method for estimation of almond kernel mass from its shell features , 2020 .

[5]  Rakhee Tiwari,et al.  Machine learnt image processing to predict weight and size of rice kernels , 2020 .

[6]  D. Hernández,et al.  Reflexiones sobre el uso de los pastos en la producción sostenible de leche y carne de res en el trópico. , 2000 .

[7]  R. Á. Hernández,et al.  Predicción del rendimiento de un cultivo de plátano mediante redes neuronales artificiales de regresión generalizada , 2012 .

[8]  Yuseika Olivera,et al.  Características botánicas y agronómicas de especies forrajeras importantes del género Brachiaria , 2006 .

[9]  José Antonio Suárez,et al.  Energy, environment and development in Cuba , 2012 .

[10]  Saurabh Gupta,et al.  An overview of sustainability assessment methodologies , 2009 .

[11]  Lope G. Tabil,et al.  A comparative study for the estimation of dynamical drying behavior of Echinacea angustifolia: regression analysis and neural network , 2004 .

[12]  Zhisheng Yao,et al.  Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films , 2017, Scientific Reports.

[13]  A. J. S. McDonald,et al.  Weed and crop discrimination using image analysis and artificial intelligence methods , 2003 .