Reactive Search and Intelligent Optimization

Reactive Search integrates sub-symbolic machine learning techniques into search heuristics for solving complex optimization problems. By automatically adjusting the working parameters, a reactive search self-tunes and adapts, effectively learning by doing until a solution is found. Intelligent Optimization, a superset of Reactive Search, concerns online and off-line schemes based on the use of memory, adaptation, incremental development of models, experimental algorithms applied to optimization, intelligent tuning and design of heuristics. Reactive Search and Intelligent Optimization is an excellent introduction to the main principles of reactive search, as well as an attempt to develop some fresh intuition for the approaches. The book looks at different optimization possibilities with an emphasis on opportunities for learning and self-tuning strategies. While focusing more on methods than on problems, problems are introduced wherever they help make the discussion more concrete, or when a specific problem has been widely studied by reactive search and intelligent optimization heuristics. Individual chapters cover reacting on the neighborhood; reacting on the annealing schedule; reactive prohibitions; model-based search; reacting on the objective function; relationships between reactive search and reinforcement learning; and much more. Each chapter is structured to show basic issues and algorithms; the parameters critical for the success of the different methods discussed; and opportunities and schemes for the automated tuning of these parameters. Anyone working in decision making in business, engineering, economics or science will find a wealth of information here.

[1]  Pierre Hansen,et al.  A Tutorial on Variable Neighborhood Search , 2003 .

[2]  Rudolf Bayer,et al.  Symmetric binary B-Trees: Data structure and maintenance algorithms , 1972, Acta Informatica.

[3]  T. Hogg Applications of Statistical Mechanics to Combinatorial Search Problems , 1995 .

[4]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[5]  H. Robbins A Stochastic Approximation Method , 1951 .

[6]  Roberto Battiti Partially persistent dynamic sets for history-sensitive heuristics , 1999, Data Structures, Near Neighbor Searches, and Methodology.

[7]  Thomas G. Dietterich,et al.  High-Performance Job-Shop Scheduling With A Time-Delay TD-lambda Network , 1995, NIPS.

[8]  Qingfu Zhang,et al.  On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm , 2004, IEEE Transactions on Evolutionary Computation.

[9]  Pedro S. de Souza,et al.  Asynchronous organizations for multi-algorithm problems , 1993, SAC '93.

[10]  Hector J. Levesque,et al.  Generating Hard Satisfiability Problems , 1996, Artif. Intell..

[11]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..

[12]  Jun Gu,et al.  Parallel algorithms and architectures for very fast AI search , 1991 .

[13]  Yoav Shoham,et al.  Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions , 2002, CP.

[14]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[15]  Stefan Voß,et al.  Dynamic tabu list management using the reverse elimination method , 1993, Ann. Oper. Res..

[16]  Jacob Barhen,et al.  TRUST: A deterministic algorithm for global optimization , 1997 .

[17]  Michail G. Lagoudakis,et al.  Least-Squares Policy Iteration , 2003, J. Mach. Learn. Res..

[18]  D. Mitra,et al.  Convergence and finite-time behavior of simulated annealing , 1985, 1985 24th IEEE Conference on Decision and Control.

[19]  Olivier C. Martin,et al.  Combining simulated annealing with local search heuristics , 1993, Ann. Oper. Res..

[20]  Zhe Wu,et al.  Penalty Formulations and Trap-Avoidance Strategies for Solving Hard Satisfiability Problems , 2005, Journal of Computer Science and Technology.

[21]  C. Voudouris,et al.  Partial Constraint Satisfaction Problems and Guided Local Search , 1996 .

[22]  Bart Selman,et al.  Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems , 2000, Journal of Automated Reasoning.

[23]  David J. Groggel,et al.  Practical Nonparametric Statistics , 2000, Technometrics.

[24]  Steve R. White,et al.  Concepts of scale in simulated annealing , 2008 .

[25]  Bart Selman,et al.  Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .

[26]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[27]  Stephen F. Smith,et al.  The Max K-Armed Bandit: A New Model of Exploration Applied to Search Heuristic Selection , 2005, AAAI.

[28]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[29]  Alan Smaill,et al.  Backbone Fragility and the Local Search Cost Peak , 2000, J. Artif. Intell. Res..

[30]  Philip W. L. Fong A Quantitative Study of Hypothesis Selection , 1995, ICML.

[31]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[32]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[33]  David L. Woodruff,et al.  Hashing vectors for tabu search , 1993, Ann. Oper. Res..

[34]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[35]  Sartaj Sahni,et al.  Experiments with Simulated Annealing , 1985, 22nd ACM/IEEE Design Automation Conference.

[36]  Giovanni Manzini,et al.  Perturbation: An Efficient Technique for the Solution of Very Large Instances of the Euclidean TSP , 1996, INFORMS J. Comput..

[37]  Holger H. Hoos,et al.  Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.

[38]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[39]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[40]  Niaz A. Wassan,et al.  A reactive tabu search meta-heuristic for the vehicle routing problem with back-hauls , 2002 .

[41]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[42]  J. Ross Quinlan,et al.  Combining Instance-Based and Model-Based Learning , 1993, ICML.

[43]  Béla Bollobás,et al.  Random Graphs , 1985 .

[44]  Jeremy Frank,et al.  Weighting for Godot: Learning Heuristics for GSAT , 1996, AAAI/IAAI, Vol. 1.

[45]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[46]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[47]  Mhand Hifi,et al.  A Reactive Local Search-Based Algorithm for the Multiple-Choice Multi-Dimensional Knapsack Problem , 2006, Comput. Optim. Appl..

[48]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[49]  Carlos Cruz Corona,et al.  Using memory and fuzzy rules in a co-operative multi-thread strategy for optimization , 2006, Inf. Sci..

[50]  Edward W. Felten,et al.  Large-Step Markov Chains for the Traveling Salesman Problem , 1991, Complex Syst..

[51]  Reuven Y. Rubinstein,et al.  Optimization of computer simulation models with rare events , 1997 .

[52]  Stephen F. Smith,et al.  A Simple Distribution-Free Approach to the Max k-Armed Bandit Problem , 2006, CP.

[53]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[54]  Jürgen Schmidhuber,et al.  Impact of Censored Sampling on the Performance of Restart Strategies , 2006, CP.

[55]  Mhand Hifi,et al.  A reactive local search-based algorithm for the disjunctively constrained knapsack problem , 2006, J. Oper. Res. Soc..

[56]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[57]  Qingfu Zhang,et al.  On the convergence of a class of estimation of distribution algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[58]  Henry A. Kautz,et al.  Auto-Walksat: A Self-Tuning Implementation of Walksat , 2001, Electron. Notes Discret. Math..

[59]  E. M. Oblow SPT: a stochastic tunneling algorithm for global optimization , 2001, J. Glob. Optim..

[60]  Barbara M. Smith,et al.  The Phase Transition and the Mushy Region in Constraint Satisfaction Problems , 1994, ECAI.

[61]  Bart Selman,et al.  Evidence for Invariants in Local Search , 1997, AAAI/IAAI.

[62]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[63]  Thomas Stützle,et al.  Local search algorithms for combinatorial problems - analysis, improvements, and new applications , 1999, DISKI.

[64]  Pierre Hansen,et al.  Algorithms for the maximum satisfiability problem , 1987, Computing.

[65]  Wayne Nelson,et al.  Applied life data analysis , 1983 .

[66]  Toby Walsh,et al.  Local Search and the Number of Solutions , 1996, CP.

[67]  Paul Morris,et al.  The Breakout Method for Escaping from Local Minima , 1993, AAAI.

[68]  Andrew W. Moore,et al.  Memory-based Stochastic Optimization , 1995, NIPS.

[69]  Rajeev Motwani,et al.  On syntactic versus computational views of approximability , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[70]  Andrew W. Moore,et al.  The Racing Algorithm: Model Selection for Lazy Learners , 1997, Artificial Intelligence Review.

[71]  Finnegan Southey Constraint Metrics for Local Search , 2005, SAT.

[72]  David Zuckerman,et al.  Optimal Speedup of Las Vegas Algorithms , 1993, Inf. Process. Lett..

[73]  Edward W. Felten,et al.  Large-step markov chains for the TSP incorporating local search heuristics , 1992, Oper. Res. Lett..

[74]  Panos M. Pardalos,et al.  Reactive GRASP with path relinking for channel assignment in mobile phone networks , 2001, DIALM '01.

[75]  Andrew J. Parkes,et al.  Clustering at the Phase Transition , 1997, AAAI/IAAI.

[76]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[77]  David Maier,et al.  Hysterical B-trees , 1981, Inf. Process. Lett..

[78]  Helena Ramalhinho Dias Lourenço,et al.  Job-shop scheduling: Computational study of local search and large-step optimization methods , 1995 .

[79]  Eric Horvitz,et al.  Restart Policies with Dependence among Runs: A Dynamic Programming Approach , 2002, CP.

[80]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[81]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .

[82]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[83]  Robert E. Tarjan,et al.  Making data structures persistent , 1986, STOC '86.

[84]  W. Jacquet,et al.  Global optimization in inverse problems: A comparison of Kriging and radial basis functions , 2005 .

[85]  Federico Girosi,et al.  Support Vector Machines: Training and Applications , 1997 .

[86]  E. Tsang,et al.  The Tunneling Algorithm for Partial CSPs and Combinatorial Optimization Problems , 2001 .

[87]  A. V. Levy,et al.  The Tunneling Algorithm for the Global Minimization of Functions , 1985 .

[88]  Jun Gu,et al.  Efficient local search for very large-scale satisfiability problems , 1992, SGAR.

[89]  S. Kauffman,et al.  Towards a general theory of adaptive walks on rugged landscapes. , 1987, Journal of theoretical biology.

[90]  Kazuhiro Saitou,et al.  Design Optimization of a Vehicle B-Pillar Subjected to Roof Crush Using Mixed Reactive Taboo Search , 2003, DAC 2003.

[91]  Torben Hagerup,et al.  A Guided Tour of Chernoff Bounds , 1990, Inf. Process. Lett..

[92]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[93]  L. Ingber Very fast simulated re-annealing , 1989 .

[94]  Roberto Battiti,et al.  Reactive search, a history-sensitive heuristic for MAX-SAT , 1997, JEAL.

[95]  Celso C. Ribeiro,et al.  Reactive GRASP: An Application to a Matrix Decomposition Problem in TDMA Traffic Assignment , 2000, INFORMS J. Comput..

[96]  Tad Hogg,et al.  Phase Transitions and the Search Problem , 1996, Artif. Intell..

[97]  P. Schyns MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING , 1993 .

[98]  Dale Schuurmans,et al.  The Exponentiated Subgradient Algorithm for Heuristic Boolean Programming , 2001, IJCAI.

[99]  Jim Smith,et al.  New Methods for Tunable, Random Landscapes , 2000, FOGA.

[100]  Catherine A. Schevon,et al.  Optimization by simulated annealing: An experimental evaluation , 1984 .

[101]  Olli Bräysy,et al.  A Reactive Variable Neighborhood Search for the Vehicle-Routing Problem with Time Windows , 2003, INFORMS J. Comput..

[102]  Michail G. Lagoudakis,et al.  Learning to Select Branching Rules in the DPLL Procedure for Satisfiability , 2001, Electron. Notes Discret. Math..

[103]  G. R. Schreiber,et al.  Cut Size Statistics of Graph Bisection Heuristics , 1999, SIAM J. Optim..

[104]  Michail G. Lagoudakis,et al.  Algorithm Selection using Reinforcement Learning , 2000, ICML.

[105]  David Maxwell Chickering,et al.  A Bayesian Approach to Tackling Hard Computational Problems (Preliminary Report) , 2001, Electron. Notes Discret. Math..

[106]  Éric D. Taillard,et al.  Robust taboo search for the quadratic assignment problem , 1991, Parallel Comput..

[107]  Stephen F. Smith,et al.  An Asymptotically Optimal Algorithm for the Max k-Armed Bandit Problem , 2006, AAAI.

[108]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[109]  Mauro Birattari,et al.  Model-based Search for Combinatorial Optimization , 2001 .

[110]  Robert E. Tarjan,et al.  Updating a Balanced Search Tree in O(1) Rotations , 1983, Inf. Process. Lett..

[111]  T. Kuhn The structure of scientific revolutions, 3rd ed. , 1996 .

[112]  Edward P. K. Tsang,et al.  Guided local search and its application to the traveling salesman problem , 1999, Eur. J. Oper. Res..

[113]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[114]  Jon Louis Bentley,et al.  Experiments on traveling salesman heuristics , 1990, SODA '90.

[115]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[116]  Bart Selman,et al.  An Empirical Study of Greedy Local Search for Satisfiability Testing , 1993, AAAI.

[117]  Wei Zhang,et al.  A Reinforcement Learning Approach to job-shop Scheduling , 1995, IJCAI.

[118]  Jürgen Schmidhuber,et al.  A Neural Network Model for Inter-problem Adaptive Online Time Allocation , 2005, ICANN.

[119]  David S. Johnson,et al.  Local Optimization and the Traveling Salesman Problem , 1990, ICALP.

[120]  Huang,et al.  AN EFFICIENT GENERAL COOLING SCHEDULE FOR SIMULATED ANNEALING , 1986 .

[121]  Leonidas J. Guibas,et al.  A dichromatic framework for balanced trees , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[122]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[123]  Y. Fukuyama,et al.  Comparative study of modern heuristic algorithms to service restoration in distribution systems , 2002, 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309).

[124]  Thomas R. Hensley,et al.  Victims of Groupthink , 1986 .

[125]  Robert E. Tarjan,et al.  Planar point location using persistent search trees , 1986, CACM.

[126]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[127]  Alexander Nareyek,et al.  Choosing search heuristics by non-stationary reinforcement learning , 2004 .

[128]  E. Weinberger,et al.  Correlated and uncorrelated fitness landscapes and how to tell the difference , 1990, Biological Cybernetics.

[129]  Roberto Battiti,et al.  Solving MAX-SAT with non-oblivious functions and history-based heuristics , 1996, Satisfiability Problem: Theory and Applications.

[130]  James M. Crawford,et al.  Experimental Results on the Crossover Point in Random 3-SAT , 1996, Artif. Intell..

[131]  Andrew B. Kahng,et al.  A new adaptive multi-start technique for combinatorial global optimizations , 1994, Oper. Res. Lett..

[132]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[133]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[134]  L. Darrell Whitley,et al.  Problem difficulty for tabu search in job-shop scheduling , 2003, Artif. Intell..

[135]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[136]  Holger H. Hoos,et al.  An adaptive noise mechanism for walkSAT , 2002, AAAI/IAAI.

[137]  Jürgen Schmidhuber,et al.  Learning Restart Strategies , 2007, IJCAI.

[138]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[139]  Jeremy Frank Learning Short-Term Weights for GSAT , 1997, IJCAI.

[140]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[141]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[142]  Katinka Wolter,et al.  Analysis and algorithms for restart , 2004, First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings..

[143]  Forbes AvenuePittsburgh Memory Based Stochastic Optimization for Validation and Tuning of Function Approximators , 1997 .

[144]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[145]  Tad Hogg,et al.  Phase Transitions in Artificial Intelligence Systems , 1987, Artif. Intell..

[146]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[147]  Eugene C. Freuder,et al.  Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems , 1994 .

[148]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[149]  Jürgen Schmidhuber,et al.  Dynamic Algorithm Portfolios , 2006, AI&M.

[150]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[151]  Edward Tsang,et al.  Solving constraint satisfaction problems using neural networks , 1991 .

[152]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[153]  Dale Schuurmans,et al.  Local search characteristics of incomplete SAT procedures , 2000, Artif. Intell..

[154]  Toby Walsh,et al.  Towards an Understanding of Hill-Climbing Procedures for SAT , 1993, AAAI.

[155]  Ulrich Faigle,et al.  Some Convergence Results for Probabilistic Tabu Search , 1992, INFORMS J. Comput..

[156]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[157]  Abdul Sattar,et al.  Adaptive Clause Weight Redistribution , 2006, CP.

[158]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[159]  Günther R. Raidl,et al.  Variable Neighborhood Descent with Self-Adaptive Neighborhood-Ordering , 2006 .

[160]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..