Physiology and pathology of iterative aggregation-disaggregation methods

SUMMARY We found characteristics that can help us predict the convergence or divergence of iterative aggregation–disaggregation methods. We provided two results for spectral radii of asymptotic error propagation matrices: (i) the spectral radius is bounded by unity for symmetric Markov chains and (ii) the spectral radius can be arbitrarily large for a certain class of sparse Markov chains. Surprisingly, permuting states of cyclic Markov chains by algorithms usually used for reducing bandwidth of matrices leads to the latter case. We proposed a sorting method that prevents divergence for this class of Markov chains.Copyright © 2011 John Wiley & Sons, Ltd.

[1]  I. Marek,et al.  A note on local and global convergence analysis of iterative aggregation–disaggregation methods , 2006 .

[2]  Ilse C. F. Ipsen,et al.  PageRank Computation, with Special Attention to Dangling Nodes , 2007, SIAM J. Matrix Anal. Appl..

[3]  Tugrul Dayar State Space Orderings for Gauss-Seidel in Markov Chains Revisited , 1998, SIAM J. Sci. Comput..

[4]  Tugrul Dayar,et al.  On the Effects of Using the Grassmann-Taksar-Heyman Method in Iterative Aggregation-Disaggregation , 1996, SIAM J. Sci. Comput..

[5]  U. Krieger Numerical Solution of Large Finite Markov Chains by Algebraic Multigrid Techniques , 1995 .

[6]  Ivana Pultarová Ordering of Matrices for Iterative Aggregation - Disaggregation Methods , 2009 .

[7]  Gene H. Golub,et al.  A Two-Stage Algorithm for Computing PageRank and Multistage Generalizations , 2007, Internet Math..

[8]  Ivana Pultarová Local convergence analysis of iterative aggregation–disaggregation methods with polynomial correction , 2007 .

[9]  Amy Nicole Langville,et al.  Updating Markov Chains with an Eye on Google's PageRank , 2005, SIAM J. Matrix Anal. Appl..

[10]  Peter Buchholz,et al.  On the Convergence of a Class of Multilevel Methods for Large Sparse Markov Chains , 2007, SIAM J. Matrix Anal. Appl..

[11]  Amy Nicole Langville,et al.  A Reordering for the PageRank Problem , 2005, SIAM J. Sci. Comput..

[12]  Ilse C. F. Ipsen,et al.  Convergence Analysis of a PageRank Updating Algorithm by Langville and Meyer , 2005, SIAM J. Matrix Anal. Appl..

[13]  Ivana Pultarová Necessary and sufficient local convergence condition of one class of iterative aggregation-disaggregation methods , 2008, Numer. Linear Algebra Appl..

[14]  Thomas A. Manteuffel,et al.  Smoothed Aggregation Multigrid for Markov Chains , 2010, SIAM J. Sci. Comput..

[15]  I. Marek,et al.  Convergence analysis of an iterative aggregation/disaggregation method for computing stationary probability vectors of stochastic matrices , 1998, Numer. Linear Algebra Appl..

[16]  Ivo Marek,et al.  Convergence of multi-level iterative aggregation-disaggregation methods , 2011, J. Comput. Appl. Math..

[17]  I. Marek,et al.  Convergence theory of some classes of iterative aggregation/disaggregation methods for computing stationary probability vectors of stochastic matrices , 2003 .

[18]  John K. Reid,et al.  An Implementation of Tarjan's Algorithm for the Block Triangularization of a Matrix , 1978, TOMS.

[19]  Tugrul Dayar,et al.  Comparison of Partitioning Techniques for Two-Level Iterative Solvers on Large, Sparse Markov Chains , 1999, SIAM J. Sci. Comput..

[20]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[21]  J. Mandel,et al.  A local convergence proof for the iterative aggregation method , 1983 .

[22]  Thomas A. Manteuffel,et al.  Multilevel Adaptive Aggregation for Markov Chains, with Application to Web Ranking , 2008, SIAM J. Sci. Comput..