Flag Hilbert-Poincar\'e series of hyperplane arrangements and their Igusa zeta functions
暂无分享,去创建一个
[1] Arthur Cayley. The Collected Mathematical Papers: On the Analytical Forms called Trees. Second Part , 2009 .
[2] Jan Denef,et al. Report on Igusa's local zeta function , 1991 .
[3] R. Stanley. An Introduction to Hyperplane Arrangements , 2007 .
[4] T. Rossmann. Computing topological zeta functions of groups, algebras, and modules, I , 2014 .
[5] b-Functions and p-adic Integrals , 1988 .
[6] T. Rossmann. Stability results for local zeta functions of groups algebras, and modules , 2017, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] Randolph B. Tarrier,et al. Groups , 1973, Algebra.
[8] T. Rossmann,et al. Groups, Graphs, and Hypergraphs: Average Sizes of Kernels of Generic Matrices with Support Constraints , 2019, Memoirs of the American Mathematical Society.
[9] J. Denef,et al. Caractristiques dEuler-Poincar, fonctions zta locales et modifications analytiques , 1992 .
[10] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[11] L. Lesieur,et al. On the eulerian numbers , 1992 .
[12] J. Verdier. Caractéristique d'Euler-Poincaré , 1973 .
[13] H. Yi. A COMPACTIFICATION OF OPEN VARIETIES , 2003 .
[14] Diane Meuser. On a functional equation of igusa's local zeta function , 1991 .
[15] C. Voll. Local functional equations for submodule zeta functions associated to nilpotent algebras of endomorphisms , 2016, 1602.07025.
[16] Nero Budur,et al. On contact loci of hyperplane arrangements , 2020, Adv. Appl. Math..
[17] The Monodromy Conjecture for hyperplane arrangements , 2009, 0906.1991.
[18] Michelle L. Wachs,et al. Geometrically Constructed Bases for Homology of Partition Lattices of Types A, B and D , 2004, Electron. J. Comb..
[19] Sergey Yuzvinsky,et al. On the local zeta functions and the b‐functions of certain hyperplane arrangements , 2010, J. Lond. Math. Soc..
[20] R. Cluckers,et al. Constructible exponential functions, motivic Fourier transform and transfer principle , 2005, math/0512022.
[21] L. Comtet,et al. Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .
[22] The strong topological monodromy conjecture for Weyl hyperplane arrangements , 2017 .
[23] Michael M. Schein,et al. Normal zeta functions of the Heisenberg groups over number rings I: the unramified case , 2013, J. Lond. Math. Soc..
[24] Robin van der Veer. Combinatorial analogs of topological zeta functions , 2018, Discret. Math..
[25] James G. Oxley,et al. Matroid theory , 1992 .
[26] Frank Wannemaker,et al. Arrangements Of Hyperplanes , 2016 .
[27] R. Stanley. Combinatorics and commutative algebra , 1983 .
[28] Michelle L. Wachs,et al. On geometric semilattices , 1985 .
[29] ZETA FUNCTIONS FOR ANALYTIC MAPPINGS, LOG-PRINCIPALIZATION OF IDEALS, AND NEWTON POLYHEDRA , 2006, math/0601336.
[30] Arthur Cayley,et al. The Collected Mathematical Papers: On the analytical forms called trees , 1881 .
[31] Functional equations for zeta functions of groups and rings , 2006, math/0612511.