Flag Hilbert-Poincar\'e series of hyperplane arrangements and their Igusa zeta functions

We introduce and study a class of multivariate rational functions associated with hyperplane arrangements, called flag Hilbert–Poincaré series. These series are intimately connected with Igusa local zeta functions of products of linear polynomials, and their motivic and topological relatives. Our main results include a self-reciprocity result for central arrangements defined over fields of characteristic zero. We also prove combinatorial formulae for a specialization of the flag Hilbert–Poincaré series for irreducible Coxeter arrangements of types A, B, and D in terms of total partitions of the respective types. We show that a different specialization of the flag Hilbert–Poincaré series, which we call the coarse flag Hilbert–Poincaré series, exhibits intriguing nonnegativity features and—in the case of Coxeter arrangements—connections with Eulerian polynomials. For numerous classes and examples of hyperplane arrangements, we determine their (coarse) flag Hilbert–Poincaré series. Some computations were aided by a SageMath package we developed.

[1]  Arthur Cayley The Collected Mathematical Papers: On the Analytical Forms called Trees. Second Part , 2009 .

[2]  Jan Denef,et al.  Report on Igusa's local zeta function , 1991 .

[3]  R. Stanley An Introduction to Hyperplane Arrangements , 2007 .

[4]  T. Rossmann Computing topological zeta functions of groups, algebras, and modules, I , 2014 .

[5]  b-Functions and p-adic Integrals , 1988 .

[6]  T. Rossmann Stability results for local zeta functions of groups algebras, and modules , 2017, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Randolph B. Tarrier,et al.  Groups , 1973, Algebra.

[8]  T. Rossmann,et al.  Groups, Graphs, and Hypergraphs: Average Sizes of Kernels of Generic Matrices with Support Constraints , 2019, Memoirs of the American Mathematical Society.

[9]  J. Denef,et al.  Caractristiques dEuler-Poincar, fonctions zta locales et modifications analytiques , 1992 .

[10]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[11]  L. Lesieur,et al.  On the eulerian numbers , 1992 .

[12]  J. Verdier Caractéristique d'Euler-Poincaré , 1973 .

[13]  H. Yi A COMPACTIFICATION OF OPEN VARIETIES , 2003 .

[14]  Diane Meuser On a functional equation of igusa's local zeta function , 1991 .

[15]  C. Voll Local functional equations for submodule zeta functions associated to nilpotent algebras of endomorphisms , 2016, 1602.07025.

[16]  Nero Budur,et al.  On contact loci of hyperplane arrangements , 2020, Adv. Appl. Math..

[17]  The Monodromy Conjecture for hyperplane arrangements , 2009, 0906.1991.

[18]  Michelle L. Wachs,et al.  Geometrically Constructed Bases for Homology of Partition Lattices of Types A, B and D , 2004, Electron. J. Comb..

[19]  Sergey Yuzvinsky,et al.  On the local zeta functions and the b‐functions of certain hyperplane arrangements , 2010, J. Lond. Math. Soc..

[20]  R. Cluckers,et al.  Constructible exponential functions, motivic Fourier transform and transfer principle , 2005, math/0512022.

[21]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[22]  The strong topological monodromy conjecture for Weyl hyperplane arrangements , 2017 .

[23]  Michael M. Schein,et al.  Normal zeta functions of the Heisenberg groups over number rings I: the unramified case , 2013, J. Lond. Math. Soc..

[24]  Robin van der Veer Combinatorial analogs of topological zeta functions , 2018, Discret. Math..

[25]  James G. Oxley,et al.  Matroid theory , 1992 .

[26]  Frank Wannemaker,et al.  Arrangements Of Hyperplanes , 2016 .

[27]  R. Stanley Combinatorics and commutative algebra , 1983 .

[28]  Michelle L. Wachs,et al.  On geometric semilattices , 1985 .

[29]  ZETA FUNCTIONS FOR ANALYTIC MAPPINGS, LOG-PRINCIPALIZATION OF IDEALS, AND NEWTON POLYHEDRA , 2006, math/0601336.

[30]  Arthur Cayley,et al.  The Collected Mathematical Papers: On the analytical forms called trees , 1881 .

[31]  Functional equations for zeta functions of groups and rings , 2006, math/0612511.