Duality Mapping for Schatten Matrix Norms

Abstract In this paper, we fully characterize the duality mapping over the space of matrices that are equipped with Schatten norms. Our approach is based on the analysis of the saturation of the Hölder inequality for Schatten norms. We prove in our main result that, for the duality mapping over the space of real-valued matrices with Schatten-p norm is a continuous and single-valued function and provide an explicit form for its computation. For the special case p = 1, the mapping is set-valued; by adding a rank constraint, we show that it can be reduced to a Borel-measurable single-valued function for which we also provide a closed-form expression.

[1]  On the continuity of the absolute value map in the schatten classes , 1989 .

[2]  Michael Unser,et al.  Hessian Schatten-Norm Regularization for Linear Inverse Problems , 2012, IEEE Transactions on Image Processing.

[3]  C. J. Himmelberg,et al.  On measurable relations , 1982 .

[4]  Schatten p-norm inequalities related to an extended operator parallelogram law , 2011, 1106.3057.

[5]  Cartesian decompositions and Schatten norms , 2000 .

[6]  Arash Amini,et al.  A fast matrix completion method for index coding , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[7]  B. Sims,et al.  GEOMETRICAL IMPLICATIONS OF UPPER SEMI-CONTINUITY OF THE DUALITY MAPPING ON A BANACH SPACE , 1978 .

[8]  Zdravko Cvetkovski,et al.  Inequalities: Theorems, Techniques and Selected Problems , 2012 .

[9]  Ren'e Vidal,et al.  A novel variational form of the Schatten-p quasi-norm , 2020, NeurIPS.

[10]  R. Bhatia Matrix Analysis , 1996 .

[11]  Babak Hassibi,et al.  A matrix completion approach to linear index coding problem , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[12]  A. E. Livingston,et al.  A theorem on duality mappings in Banach spaces , 1962 .

[13]  Carl de Boor,et al.  On “best” interpolation☆ , 1976 .

[14]  W. Petryshyn,et al.  A characterization of strict convexity of banach spaces and other uses of duality mappings , 1970 .

[15]  Paul Tseng,et al.  Hankel Matrix Rank Minimization with Applications to System Identification and Realization , 2013, SIAM J. Matrix Anal. Appl..

[16]  Michael Unser,et al.  A Unifying Representer Theorem for Inverse Problems and Machine Learning , 2019, Foundations of Computational Mathematics.

[17]  Feiping Nie,et al.  Low-Rank Matrix Recovery via Efficient Schatten p-Norm Minimization , 2012, AAAI.

[18]  Jean-Christophe Bourin Matrix versions of some classical inequalities , 2006 .

[19]  Charles R. Johnson,et al.  Matrix Analysis, 2nd Ed , 2012 .

[20]  On Schatten p-norms of commutators , 2015 .

[21]  M. Moslehian,et al.  Norm inequalities related to p-Schatten class , 2016 .

[22]  Ping Liu,et al.  The best generalized inverse of the linear operator in normed linear space , 2007 .

[23]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[24]  Justin K. Romberg,et al.  An Overview of Low-Rank Matrix Recovery From Incomplete Observations , 2016, IEEE Journal of Selected Topics in Signal Processing.

[25]  Fuad Kittaneh,et al.  Inequalities for the Schattenp-norm. III , 1986 .

[26]  M. S. Moslehian,et al.  Schatten p-norm inequalities related to a characterization of inner product spaces , 2008, 0801.2726.

[27]  Dennis F. Cudia The geometry of Banach spaces , 1964 .

[28]  I. Ciorǎnescu Geometry of banach spaces, duality mappings, and nonlinear problems , 1990 .

[29]  Fuad Kittaneh,et al.  Inequalities for the Schatten p-norm II , 1985, Glasgow Mathematical Journal.

[30]  Yuanyuan Liu,et al.  Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization , 2016, AAAI.

[31]  Yonina C. Eldar,et al.  Rank Awareness in Joint Sparse Recovery , 2010, IEEE Transactions on Information Theory.

[32]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[33]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[34]  Yuanyuan Liu,et al.  Unified Scalable Equivalent Formulations for Schatten Quasi-Norms , 2016, ArXiv.

[35]  Xiangxiong Zhang,et al.  Superconvergence of C0-Qk Finite Element Method for Elliptic Equations with Approximated Coefficients , 2019, J. Sci. Comput..

[36]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[37]  Hideki Kosaki,et al.  Inequalities for the Schatten p -norm V , 1987 .

[38]  Yan Liu,et al.  Weighted Schatten $p$ -Norm Minimization for Image Denoising and Background Subtraction , 2015, IEEE Transactions on Image Processing.

[39]  K. Audenaert,et al.  Impressions of convexity: An illustration for commutator bounds , 2010, 1004.2700.

[40]  Wasin So,et al.  Facial structures of schatten p-Norms , 1990 .

[41]  Michael Unser,et al.  Poisson Image Reconstruction With Hessian Schatten-Norm Regularization , 2013, IEEE Transactions on Image Processing.

[42]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[43]  Petros Maragos,et al.  Structure Tensor Total Variation , 2015, SIAM J. Imaging Sci..

[44]  Qibin Fan,et al.  Robust Schatten-p Norm Based Approach for Tensor Completion , 2020, J. Sci. Comput..

[45]  D. Potapov,et al.  Frechet differentiability of Sp norms , 2013, 1306.0362.

[46]  Manuel D. Contreras,et al.  On upper semicontinuity of duality mappings , 1994 .

[47]  Inequalities for the Schatten p-Norm . , .