The Road to Deterministic Matrices with the Restricted Isometry Property

The restricted isometry property (RIP) is a well-known matrix condition that provides state-of-the-art reconstruction guarantees for compressed sensing. While random matrices are known to satisfy this property with high probability, deterministic constructions have found less success. In this paper, we consider various techniques for demonstrating RIP deterministically, some popular and some novel, and we evaluate their performance. In evaluating some techniques, we apply random matrix theory and inadvertently find a simple alternative proof that certain random matrices are RIP. Later, we propose a particular class of matrices as candidates for being RIP, namely, equiangular tight frames (ETFs). Using the known correspondence between real ETFs and strongly regular graphs, we investigate certain combinatorial implications of a real ETF being RIP. Specifically, we give probabilistic intuition for a new bound on the clique number of Paley graphs of prime order, and we conjecture that the corresponding ETFs are RIP in a manner similar to random matrices.

[1]  H. Jeffreys,et al.  Theory of probability , 1896 .

[2]  L. M. M.-T. Theory of Probability , 1929, Nature.

[3]  J. J. Seidel,et al.  Equilateral point sets in elliptic geometry , 1966 .

[4]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[5]  V. V. Yurinskii Exponential inequalities for sums of random vectors , 1976 .

[6]  J. J. Seidel,et al.  A SURVEY OF TWO-GRAPHS , 1976 .

[7]  Béla Bollobás,et al.  Random Graphs , 1985 .

[8]  Stephen D. Cohen CLIQUE NUMBERS OF PALEY GRAPHS , 1988 .

[9]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[10]  S. Graham,et al.  Lower Bounds for Least Quadratic Non-Residues , 1990 .

[11]  R. Peralta On the distribution of quadratic residues and nonresidues modulo a prime number , 1992 .

[12]  P. Stevenhagen,et al.  Chebotarëv and his density theorem , 1996 .

[13]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[14]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[15]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[16]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[17]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[19]  Noga Alon,et al.  Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.

[20]  Georgios B. Giannakis,et al.  Achieving the Welch bound with difference sets , 2005, IEEE Transactions on Information Theory.

[21]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[22]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[23]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[24]  Joseph M. Renes Equiangular tight frames from Paley tournaments , 2007 .

[25]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[26]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[27]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[28]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[29]  Holger Rauhut Stability Results for Random Sampling of Sparse Trigonometric Polynomials , 2008, IEEE Transactions on Information Theory.

[30]  Shayne Waldron,et al.  On the construction of equiangular frames from graphs , 2009 .

[31]  R. Calderbank,et al.  Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery , 2009 .

[32]  Dustin G. Mixon,et al.  Steiner equiangular tight frames , 2010, 1009.5730.

[33]  Stephen J. Dilworth,et al.  Explicit constructions of RIP matrices and related problems , 2010, ArXiv.

[34]  Vladimir Temlyakov,et al.  CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS , 2022 .

[35]  Dustin G. Mixon,et al.  Full Spark Frames , 2011, 1110.3548.

[36]  Dustin G. Mixon,et al.  Certifying the Restricted Isometry Property is Hard , 2012, IEEE Transactions on Information Theory.