The Road to Deterministic Matrices with the Restricted Isometry Property
暂无分享,去创建一个
[1] H. Jeffreys,et al. Theory of probability , 1896 .
[2] L. M. M.-T.. Theory of Probability , 1929, Nature.
[3] J. J. Seidel,et al. Equilateral point sets in elliptic geometry , 1966 .
[4] Lloyd R. Welch,et al. Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[5] V. V. Yurinskii. Exponential inequalities for sums of random vectors , 1976 .
[6] J. J. Seidel,et al. A SURVEY OF TWO-GRAPHS , 1976 .
[7] Béla Bollobás,et al. Random Graphs , 1985 .
[8] Stephen D. Cohen. CLIQUE NUMBERS OF PALEY GRAPHS , 1988 .
[9] Fan Chung Graham,et al. Quasi-random graphs , 1988, Comb..
[10] S. Graham,et al. Lower Bounds for Least Quadratic Non-Residues , 1990 .
[11] R. Peralta. On the distribution of quadratic residues and nonresidues modulo a prime number , 1992 .
[12] P. Stevenhagen,et al. Chebotarëv and his density theorem , 1996 .
[13] Balas K. Natarajan,et al. Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..
[14] P. Massart,et al. Adaptive estimation of a quadratic functional by model selection , 2000 .
[15] Béla Bollobás,et al. Random Graphs: Notation , 2001 .
[16] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[17] Michael Elad,et al. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[18] Thomas Strohmer,et al. GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.
[19] Noga Alon,et al. Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.
[20] Georgios B. Giannakis,et al. Achieving the Welch bound with difference sets , 2005, IEEE Transactions on Information Theory.
[21] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[22] N. Linial,et al. Expander Graphs and their Applications , 2006 .
[23] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[24] Joseph M. Renes. Equiangular tight frames from Paley tournaments , 2007 .
[25] Ronald A. DeVore,et al. Deterministic constructions of compressed sensing matrices , 2007, J. Complex..
[26] M. Rudelson,et al. On sparse reconstruction from Fourier and Gaussian measurements , 2008 .
[27] R. DeVore,et al. A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .
[28] E. Candès. The restricted isometry property and its implications for compressed sensing , 2008 .
[29] Holger Rauhut. Stability Results for Random Sampling of Sparse Trigonometric Polynomials , 2008, IEEE Transactions on Information Theory.
[30] Shayne Waldron,et al. On the construction of equiangular frames from graphs , 2009 .
[31] R. Calderbank,et al. Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery , 2009 .
[32] Dustin G. Mixon,et al. Steiner equiangular tight frames , 2010, 1009.5730.
[33] Stephen J. Dilworth,et al. Explicit constructions of RIP matrices and related problems , 2010, ArXiv.
[34] Vladimir Temlyakov,et al. CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS , 2022 .
[35] Dustin G. Mixon,et al. Full Spark Frames , 2011, 1110.3548.
[36] Dustin G. Mixon,et al. Certifying the Restricted Isometry Property is Hard , 2012, IEEE Transactions on Information Theory.