A New Algorithm for Optimization of K-Means Clustering with Determining Maximum Distance Between Centroids
暂无分享,去创建一个
[1] Ali Ridho Barakbah,et al. Identifying moving variance to make automatic clustering for normal data set , 2004 .
[2] Yiu-ming Cheung,et al. k*-Means: A new generalized k-means clustering algorithm , 2003, Pattern Recognit. Lett..
[3] H. Ralambondrainy,et al. A conceptual version of the K-means algorithm , 1995, Pattern Recognit. Lett..
[4] Paul S. Bradley,et al. Refining Initial Points for K-Means Clustering , 1998, ICML.
[5] Cor J. Veenman,et al. A Maximum Variance Cluster Algorithm , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[6] Samir Saoudi,et al. Stochastic K-means algorithm for vector quantization , 2001, Pattern Recognit. Lett..
[7] Ali Ridho Barakbah,et al. Optimized K-means: an algorithm of initial centroids optimization for K-means , 2005 .
[8] Pedro Larrañaga,et al. An empirical comparison of four initialization methods for the K-Means algorithm , 1999, Pattern Recognit. Lett..
[9] Shehroz S. Khan,et al. Cluster center initialization algorithm for K-means clustering , 2004, Pattern Recognit. Lett..
[10] Siddheswar Ray,et al. Determination of Number of Clusters in K-Means Clustering and Application in Colour Image Segmentation , 2000 .
[11] Vladimir Estivill-Castro,et al. Why so many clustering algorithms: a position paper , 2002, SKDD.
[12] Yi-tzuu T. Chien. Interactive pattern recognition , 1978 .