Molecular characterization of the Pseudomonas aeruginosa serotype O5 (PAO1) B‐band lipopolysaccharide gene cluster

Pseudomonas aeruginosa co‐expresses A‐band lipopolysaccharide (LPS), a homopolymer of rhamnose, and B‐band LPS, a heteropolymer with a repeating unit of 2–5 sugars which is the serotype‐specific antigen. The gene clusters for A‐ and B‐band biosynthesis in P. aeruginosa O5 (strain PAO1) have been cloned previously. Here we report the DNA sequence and molecular analysis of the B‐band O‐antigen biosynthetic cluster. Sixteen open reading frames (ORFs) thought to be involved in synthesis of the O5 O antigen were identified, including wzz (rol), wzy (rfc), and wbpA–wbpN. A further 3 ORFs not thought to be involved with LPS synthesis were identified (hisH, hisF, and uvrB). Most of the wbp genes are found only in serotypes O2, O5, O16, O18, and O20, which form a chemically and structurally related O‐antigen serogroup. In contrast, wbpM and wbpN are common to all 20 serotypes of P. aeruginosa. Although wbpM is not serogroup‐specific, knockout mutations confirmed it is necessary for O5 O‐antigen biosynthesis. A novel insertion sequence, IS1209, is present at the junction between the serogroup‐specific and non‐specific regions. We have predicted the functions of the proteins encoded in the wbp cluster based on their homologies to those in the databases, and provide a proposed pathway of P. aeruginosa O5 O‐antigen biosynthesis.

[1]  H. Schweizer,et al.  Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. , 1994, Gene.

[2]  C. Whitfield,et al.  Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. , 1993, Advances in microbial physiology.

[3]  D. Maskell,et al.  The identification, cloning and mutagenesis of a genetic locus required for lipopolysaccharide biosynthesis in Bordetella pertussis , 1996, Molecular microbiology.

[4]  S. Roychoudhury,et al.  Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients , 1991, Clinical Microbiology Reviews.

[5]  R. Cole,et al.  An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase , 1996, Journal of bacteriology.

[6]  A. Kropinski,et al.  O-antigen conversion in Pseudomonas aeruginosa PAO1 by bacteriophage D3 , 1983, Journal of bacteriology.

[7]  T. Pitt,et al.  Role of lipopolysaccharide in virulence of Pseudomonas aeruginosa , 1984, Infection and immunity.

[8]  M. Vasil,et al.  Possible insertion sequences in a mosaic genome organization upstream of the exotoxin A gene in Pseudomonas aeruginosa , 1990, Journal of bacteriology.

[9]  P. Hitchcock,et al.  Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels , 1983, Journal of bacteriology.

[10]  J. Klena,et al.  Genetics of lipopolysaccharide biosynthesis in enteric bacteria. , 1993, Microbiological reviews.

[11]  J. Goldberg,et al.  Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate , 1984, Journal of bacteriology.

[12]  R. Morona,et al.  Molecular, genetic, and topological characterization of O-antigen chain length regulation in Shigella flexneri , 1995, Journal of bacteriology.

[13]  A. Henriques,et al.  A Bacillus subtilis morphogene cluster that includes spoVE is homologous to the mra region of Escherichia coli. , 1992, Biochimie.

[14]  M. Skurnik,et al.  A novel locus of Yersinia enterocolitica serotype O:3 involved in lipopolysaccharide outer core biosynthesis , 1995, Molecular microbiology.

[15]  W. N. Burnette,et al.  "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. , 1981, Analytical biochemistry.

[16]  D. Martin,et al.  Common Denominators of Promoter Control in Pseudomonas and Other Bacteria , 1989, Nature Biotechnology.

[17]  P. Sokol,et al.  Genetic rearrangement associated with in vivo mucoid conversion of Pseudomonas aeruginosa PAO is due to insertion elements , 1994, Journal of bacteriology.

[18]  C. Penning,et al.  Optimization of routine transformation of Escherichia coli with plasmid DNA. , 1990, BioTechniques.

[19]  U. Meier-Dieter,et al.  Nucleotide sequence of the Escherichia coli rfe gene involved in the synthesis of enterobacterial common antigen. Molecular cloning of the rfe-rff gene cluster. , 1992, The Journal of biological chemistry.

[20]  D. Feingold,et al.  Formation of UDP-2-acetamido-2-deoxy-L-galactose and UDP-2-acetamido-2-deoxy-L-galacturonic acid by Pseudomonas aeruginosa , 1990, Journal of bacteriology.

[21]  H. Schweizer,et al.  An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. , 1995, Gene.

[22]  H. Mori,et al.  Systematic sequencing of the Escherichia coli genome: analysis of the 2.4-4.1 min (110,917-193,643 bp) region. , 1994, Nucleic acids research.

[23]  P. Reeves,et al.  Identification and sequence of the gene for abequose synthase, which confers antigenic specificity on group B salmonellae: homology with galactose epimerase , 1989, Journal of bacteriology.

[24]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[25]  P. Reeves,et al.  C-terminal half of Salmonella enterica WbaP (RfbP) is the galactosyl-1-phosphate transferase domain catalyzing the first step of O-antigen synthesis , 1996, Journal of bacteriology.

[26]  B. Tümmler,et al.  Genomic mapping of Pseudomonas aeruginosa PAO. , 1994, Microbiology.

[27]  R. Morona,et al.  Characterization of the dTDP‐rhamnose biosynthetic genes encoded in the rfb iocus of Shigella flexneri , 1994, Molecular microbiology.

[28]  J. Lam,et al.  Identification of rfbA, involved in B-band lipopolysaccharide biosynthesis in Pseudomonas aeruginosa serotype O5 , 1995, Infection and immunity.

[29]  G. Rieder,et al.  Function of hisF and hisH gene products in histidine biosynthesis. , 1994, The Journal of biological chemistry.

[30]  R. Morona,et al.  Characterization of the rfc region of Shigella flexneri , 1994, Journal of bacteriology.

[31]  S. E. West,et al.  Codon usage in Pseudomonas aeruginosa. , 1988, Nucleic acids research.

[32]  Chia Y. Lee,et al.  Sequence analysis and molecular characterization of genes required for the biosynthesis of type 1 capsular polysaccharide in Staphylococcus aureus , 1994, Journal of bacteriology.

[33]  C. Whitfield Biosynthesis of lipopolysaccharide O antigens. , 1995, Trends in microbiology.

[34]  H. Schweizer,et al.  Molecular cloning and characterization of the rfc gene of Pseudomonas aeruginosa (serotype O5) , 1995, Molecular microbiology.

[35]  C. Yanisch-Perron,et al.  Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.

[36]  P. Alifano,et al.  Nucleotide sequences of the genes regulating O-polysaccharide antigen chain length (rol) from Escherichia coli and Salmonella typhimurium: protein homology and functional complementation , 1992, Journal of bacteriology.

[37]  J. Thorson,et al.  Biosynthesis of 3,6-dideoxyhexoses: new mechanistic reflections upon 2,6-dideoxy, 4,6-dideoxy, and amino sugar construction , 1993 .

[38]  R. Hancock,et al.  Outer membrane of Pseudomonas aeruginosa: heat- 2-mercaptoethanol-modifiable proteins , 1979, Journal of bacteriology.

[39]  J. Lam,et al.  Monoclonal antibodies as probes to examine serotype-specific and cross-reactive epitopes of lipopolysaccharides from serotypes O2, O5, and O16 of Pseudomonas aeruginosa , 1992, Journal of bacteriology.

[40]  J. Kaper,et al.  Cloning and sequence of a region encoding a surface polysaccharide of Vibrio cholerae O139 and characterization of the insertion site in the chromosome of Vibrio cholerae O1 , 1996, Molecular microbiology.

[41]  J. Lam,et al.  Chromosomal mapping, expression and synthesis of lipopolysaccharide in Pseudomonas aeruginosa: a role for guanosine diphospho (GDP)‐D‐mannose , 1993, Molecular microbiology.

[42]  David J. States,et al.  Identification of protein coding regions by database similarity search , 1993, Nature Genetics.

[43]  P. Lio’,et al.  Histidine biosynthetic pathway and genes: structure, regulation, and evolution. , 1996, Microbiological reviews.

[44]  P. Reeves,et al.  Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length , 1993, Molecular microbiology.

[45]  V. Shibaev Biosynthesis of bacterial polysaccharide chains composed of repeating units. , 1986, Advances in carbohydrate chemistry and biochemistry.

[46]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[47]  G. Dubray,et al.  A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. , 1982, Analytical biochemistry.