Impact of the Dimension of the Observation Space on the Decision Thresholds for GLRT Detectors in Spectrum Sensing

The generalized likelihood ratio test (GLRT) detectors have been widely used for spectrum sensing in cognitive radio. However, due to difficulties in characterizing the exact distributions of the statistics, the decision thresholds obtained so far are based on the asymptotic assumption that the sample size is very large while the dimension of the observation space is very small. Not enough attention has been paid to the accuracy of the thresholds for the application with a moderate or large dimension, which usually occurs in the sensing scenarios with multiple antennas and/or multiple nodes. In this paper, we formulate the distributions in terms of a summation form of a series of chi-square distributions. Utilizing the series, the improved thresholds for GLRT detectors are then given by using the generalized inverse expansion of Cornish-Fisher type. The simulation results show that the improved thresholds are more robust to the dimension of the observation space, and can lead to higher spectrum utilization for the cognitive user and more reliable detection performance than the asymptotic ones.

[1]  P. Krishnaiah,et al.  The distributions of the likelihood ratio statistics for tests of certain covariance structures of complex multivariate normal populations , 1976 .

[2]  Knut Conradsen,et al.  A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[3]  Amir Ghasemi,et al.  Asymptotic performance of collaborative spectrum sensing under correlated log-normal shadowing , 2007, IEEE Communications Letters.

[4]  A. W. Davis,et al.  Generalized Asymptotic Expansions of Cornish-Fisher Type , 1968 .

[5]  Keith Q. T. Zhang Advanced Detection Techniques for Cognitive Radio , 2009, 2009 IEEE International Conference on Communications.

[6]  Yonghong Zeng,et al.  GLRT-Based Spectrum Sensing for Cognitive Radio , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[7]  Yonghong Zeng,et al.  A Review on Spectrum Sensing for Cognitive Radio: Challenges and Solutions , 2010, EURASIP J. Adv. Signal Process..

[8]  Xiuying Cao,et al.  Effect of Correlations on the Performance of GLRT Detector in Cognitive Radios , 2011, IEICE Trans. Commun..

[9]  Jiangzhou Wang,et al.  Chunk-based resource allocation in OFDMA systems - part I: chunk allocation , 2009, IEEE Transactions on Communications.

[10]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[11]  M. Alamgir,et al.  Signal detection for cognitive radio using multiple antennas , 2008, 2008 IEEE International Symposium on Wireless Communication Systems.

[12]  Yonghong Zeng,et al.  Eigenvalue-based spectrum sensing algorithms for cognitive radio , 2008, IEEE Transactions on Communications.

[13]  Yonghong Zeng,et al.  Multi-antenna based spectrum sensing for cognitive radios: A GLRT approach , 2010, IEEE Transactions on Communications.

[14]  Roberto Garello,et al.  Cooperative spectrum sensing based on the limiting eigenvalue ratio distribution in wishart matrices , 2009, IEEE Communications Letters.

[15]  S. E. Ahmed,et al.  Handbook of Statistical Distributions with Applications , 2007, Technometrics.