Synthesis and Electronic Properties of 3‐Acceptor‐Substituted and 3,7‐Bisacceptor‐Substituted Phenothiazines

3-Acceptor-substituted and 3,7-bisacceptor-substituted phenothiazines can be synthesized in moderate to excellent yields through Suzuki cross-coupling reactions between phenothiazin-3-yl pinacolyl boronates or phenothiazin-3,7-diyl bis(pinacolyl boronates) and electron-deficient (hetero)aryl halides. The electronic properties of (hetero)aryl-substituted N-methyl phenothiazines (UV/Vis absorption, fluorescence, redox potentials) can be correlated with the computed energies of the frontier molecular orbitals. Nitro-substituted derivatives reveal electronically amphoteric behavior, displaying both reversible oxidations and reversible reductions. X-ray structure analysis of the phenothiazinyl p-(2,5-dinitro)phenylene-bridged dyad 13 revealed donor–acceptor interactions between the molecules. Pyridyl and pyrimidyl derivatives fluoresce with quantum yields (Φf) of up to 49 % and can be regarded as redox-active fluorophores. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

[1]  H. Meier Konjugierte Oligomere mit terminaler Donor‐Acceptor‐Substitution , 2005 .

[2]  F. Raymo,et al.  Electron and energy transfer modulation with photochromic switches. , 2005, Chemical Society reviews.

[3]  L. Dalton,et al.  Heterocyclic nonlinear optical chromophores composed of phenothiazine or carbazole donor and 2-cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran acceptor , 2005 .

[4]  K. Clays,et al.  Switching of molecular second-order polarisability in solution , 2004 .

[5]  T. Müller,et al.  Synthesis and Electronic Properties of Alkynylated Phenothiazines , 2003 .

[6]  A. Ajayaghosh Donor-acceptor type low band gap polymers: polysquaraines and related systems. , 2003, Chemical Society reviews.

[7]  A. Bard,et al.  Plastic Electrochromic Devices: Electrochemical Characterization and Device Properties of a Phenothiazine-Phenylquinoline Donor−Acceptor Polymer , 2003 .

[8]  M. Newton Electronic Coupling of Donor—Acceptor Sites Mediated by Homologous Unsaturated Organic Bridges , 2003 .

[9]  R. Carroll,et al.  Der Beginn einer molekularen Elektronik , 2002 .

[10]  J. Daub,et al.  Donor–Acceptor Functionalized Luminescent Hairpin Peptides: Electrochemiluminescence of Pyrene/Phenothiazine‐Substituted Optically Active Systems , 2002 .

[11]  T. Müller,et al.  The First Synthesis and Electronic Properties of Tetrakis[(hetero)phenanthrenyl]methanes , 2002 .

[12]  T. Müller,et al.  Syntheses of phenothiazinylboronic acid derivatives - Suitable starting points for the construction of redox active materials , 2002 .

[13]  T. Müller,et al.  Convenient Syntheses of Tetraarylmethane Starting Materials , 2002 .

[14]  K. Zeitler,et al.  First synthesis and electronic properties of (hetero)aryl bridged and directly linked redox active phenothiazinyl dyads and triads , 2001 .

[15]  Samson A. Jenekhe,et al.  New Conjugated Polymers with Donor−Acceptor Architectures: Synthesis and Photophysics of Carbazole−Quinoline and Phenothiazine−Quinoline Copolymers and Oligomers Exhibiting Large Intramolecular Charge Transfer , 2001 .

[16]  David Beljonne,et al.  Interchain Interactions in Organic π‐Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport , 2001 .

[17]  J. Hummelen,et al.  Recent progress in thin film organic photodiodes , 2001 .

[18]  A. Abbotto,et al.  Push–Pull Organic Chromophores for Frequency‐Upconverted Lasing , 2000 .

[19]  K. Zeitler,et al.  Synthesis of functionalized ethynylphenothiazine fluorophores. , 2000, Organic letters.

[20]  T. Müller,et al.  Synthesis and Electronic Properties of Tetrakis[4‐(pyrimidyl)phenyl]methanes − A Novel Class of Electronically Active Nanometer‐Sized Scaffolds , 2000 .

[21]  J. Tour,et al.  Molecular electronics. Synthesis and testing of components. , 2000, Accounts of chemical research.

[22]  Ullrich Mitschke,et al.  The electroluminescence of organic materials , 2000 .

[23]  T. Müller First synthesis and electronic properties of ring-alkynylated phenothiazines , 1999 .

[24]  F. Garnier ORGANIC-BASED ELECTRONICS A LA CARTE , 1999 .

[25]  R. Wortmann,et al.  Organic Materials for Non‐Linear Optics: The 2D Approach , 1998 .

[26]  Y. Yamashita,et al.  Highly polarized electron donors, acceptors and donor–acceptor compounds for organic conductors , 1998 .

[27]  Howard E. Katz,et al.  Organic molecular solids as thin film transistor semiconductors , 1997 .

[28]  H. Spreitzer,et al.  Electron‐Transfer Chemistry and Redox‐Switching of Stilbene‐Like Heteroaromatic Compounds — Syntheses, Optoelectrochemical and ESR/ENDOR Studies , 1996 .

[29]  H. Spreitzer,et al.  Multi‐Mode Switching Based on Dihydroazulene/vinylheptafulvene Photochromism: Synergism of Photochromism and Redox Switching in Heteroaryl‐Functionalized Systems , 1996 .

[30]  P. Günter,et al.  Non‐classical donor–acceptor chromophores for second order nonlinear optics , 1996 .

[31]  Alan R. Katritzky,et al.  Comprehensive Heterocyclic Chemistry IV , 1996 .

[32]  J. Daub,et al.  Lumineszenz durch Elektronentransferaktivierung: fluoreszente Donor/Acceptor‐substituierte stilbenoide Verbindungen mit pyrenoiden und heteroaromatischen Teilstrukturen , 1995 .

[33]  M. Lang,et al.  Phenothiazin-Bipyridinium-Oligooxacyclophane , 1993 .

[34]  H. Segawa,et al.  One-dimensional donor-acceptor polymer: Phosphorus porphyrins linked with molecular wire , 1993 .

[35]  Guilford Jones,et al.  PHOTOINDUCED ELECTRON TRANSFER IN FLEXIBLE BIARYL DONOR-ACCEPTOR MOLECULES , 1993 .

[36]  C. Bubeck Advances in spectroscopy, Vol. 19, spectroscopy of advanced materials. Edited by R. J. H. Clark, R. E. Hester, John Wiley & Sons, Chichester 1991, XIX, 405 pp., £ 115, ISBN 0-471-92981-6 , 1992 .

[37]  J. Brédas,et al.  Electronic structure and nonlinear optical properties of push-pull conjugated molecules , 1992 .

[38]  H. Ringsdorf,et al.  Donor–acceptor substituted polyenes: Orientation in mono‐ and multilayers , 1992 .

[39]  P. Bergés,et al.  Structure, electrical conductivity and dielectric relaxation of the phenothiazine-tetracyanoethene 1:1 complex , 1992 .

[40]  W. Jones,et al.  Intramolecular electron transfer in rigid media at room temperature , 1992 .

[41]  A. Harriman,et al.  Charge transfer across oblique bisporphyrins: two-center photoactive molecules , 1991 .

[42]  T. Meyer,et al.  Long-Range, Light-Induced Redox Separation across a Ligand Bridge , 1990 .

[43]  E. Nishiwaki,et al.  Synthesis of nitrated oligo-N-methylpyrrole carboxamide derivatives and their photochemical DNA cleaving activities , 1990 .

[44]  S. Kunte,et al.  Solvent effects on electronic absorption spectra of nitrochlorobenzenes, nitrophenols and nitroanilines—lll. Excited state dipole moments and specific solute—solvent interaction energies employing Bakhshiev's approach , 1989 .

[45]  J. Sauvage,et al.  Ruthenium and osmium complexes of 2,2′ : 6′,2″-terpyridine covalently linked to electron acceptor and electron donor groups , 1989 .

[46]  R. Gompper,et al.  Donor‐acceptor‐substituierte cyclische π‐Elektronensysteme ‐ Prüfsteine für Theorien und Bausteine für neue Materialien , 1988 .

[47]  H. Fujita,et al.  UV-A induced DNA nicking activities of skin photosensitive drugs: phenothiazines, benzothiadiazines and afloqualone. , 1988, Chemico-biological interactions.

[48]  G. Buettner,et al.  SPECTROSCOPIC STUDIES OF CUTANEOUS PHOTOSENSITIZING AGENTS–VIII. A SPIN‐TRAPPING STUDY OF LIGHT INDUCED FREE RADICALS FROM CHLORPROMAZINE and PROMAZINE , 1985, Photochemistry and photobiology.

[49]  J. Piette,et al.  Induction of breaks in deoxyribonucleic acid by photoexcited promazine derivatives. , 1984, Biochemical pharmacology.

[50]  H. Gerischer,et al.  Electron Transfer Reactions at n‐GaP (100) and (111) in Acetonitrile Solutions Facilitated by Cation Adsorption , 1984 .

[51]  Guilford Jones,et al.  Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism , 1983 .

[52]  R. Egdell,et al.  Thionine coated electrode for photogalvanic cells , 1979, Nature.

[53]  C. O. Okafor STUDIES IN THE HETEROCYCLIC SERIES. XII. THE CHEMISTRY AND APPLICATIONS OF AZA AND THIA ANALOGS OF PHENOXAZINE AND RELATED COMPOUNDS , 1977 .

[54]  J. L. Gillson,et al.  Synthesis of electrically conductive organic solids , 1976 .

[55]  H. Burrows,et al.  Intermediates in the pulse radiolysis of solutions of phenothiazine and its derivatives: reactions of cycloalkylperoxyl radicals with phenothiazines , 1973 .

[56]  Y. Iida The Cation Radical Salts of Phenothiazine and Related Compounds , 1971 .

[57]  I. Silberg,et al.  Recent advances in the chemistry of phenothiazines. , 1968, Advances in heterocyclic chemistry.

[58]  T. Urbański,et al.  1,3-OXAZINE DERIVATIVES. , 1963, Advances in heterocyclic chemistry.

[59]  F. Forrest,et al.  Free radicals as metabolites of drugs derived from phenothiazine. , 1958, Biochimica et biophysica acta.

[60]  F. Mietzsch Die Entwicklung der Antihistaminmittel und zentral dämpfenden Mittel , 1954 .