Synthesis and Electronic Properties of 3‐Acceptor‐Substituted and 3,7‐Bisacceptor‐Substituted Phenothiazines
暂无分享,去创建一个
[1] H. Meier. Konjugierte Oligomere mit terminaler Donor‐Acceptor‐Substitution , 2005 .
[2] F. Raymo,et al. Electron and energy transfer modulation with photochromic switches. , 2005, Chemical Society reviews.
[3] L. Dalton,et al. Heterocyclic nonlinear optical chromophores composed of phenothiazine or carbazole donor and 2-cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran acceptor , 2005 .
[4] K. Clays,et al. Switching of molecular second-order polarisability in solution , 2004 .
[5] T. Müller,et al. Synthesis and Electronic Properties of Alkynylated Phenothiazines , 2003 .
[6] A. Ajayaghosh. Donor-acceptor type low band gap polymers: polysquaraines and related systems. , 2003, Chemical Society reviews.
[7] A. Bard,et al. Plastic Electrochromic Devices: Electrochemical Characterization and Device Properties of a Phenothiazine-Phenylquinoline Donor−Acceptor Polymer , 2003 .
[8] M. Newton. Electronic Coupling of Donor—Acceptor Sites Mediated by Homologous Unsaturated Organic Bridges , 2003 .
[9] R. Carroll,et al. Der Beginn einer molekularen Elektronik , 2002 .
[10] J. Daub,et al. Donor–Acceptor Functionalized Luminescent Hairpin Peptides: Electrochemiluminescence of Pyrene/Phenothiazine‐Substituted Optically Active Systems , 2002 .
[11] T. Müller,et al. The First Synthesis and Electronic Properties of Tetrakis[(hetero)phenanthrenyl]methanes , 2002 .
[12] T. Müller,et al. Syntheses of phenothiazinylboronic acid derivatives - Suitable starting points for the construction of redox active materials , 2002 .
[13] T. Müller,et al. Convenient Syntheses of Tetraarylmethane Starting Materials , 2002 .
[14] K. Zeitler,et al. First synthesis and electronic properties of (hetero)aryl bridged and directly linked redox active phenothiazinyl dyads and triads , 2001 .
[15] Samson A. Jenekhe,et al. New Conjugated Polymers with Donor−Acceptor Architectures: Synthesis and Photophysics of Carbazole−Quinoline and Phenothiazine−Quinoline Copolymers and Oligomers Exhibiting Large Intramolecular Charge Transfer , 2001 .
[16] David Beljonne,et al. Interchain Interactions in Organic π‐Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport , 2001 .
[17] J. Hummelen,et al. Recent progress in thin film organic photodiodes , 2001 .
[18] A. Abbotto,et al. Push–Pull Organic Chromophores for Frequency‐Upconverted Lasing , 2000 .
[19] K. Zeitler,et al. Synthesis of functionalized ethynylphenothiazine fluorophores. , 2000, Organic letters.
[20] T. Müller,et al. Synthesis and Electronic Properties of Tetrakis[4‐(pyrimidyl)phenyl]methanes − A Novel Class of Electronically Active Nanometer‐Sized Scaffolds , 2000 .
[21] J. Tour,et al. Molecular electronics. Synthesis and testing of components. , 2000, Accounts of chemical research.
[22] Ullrich Mitschke,et al. The electroluminescence of organic materials , 2000 .
[23] T. Müller. First synthesis and electronic properties of ring-alkynylated phenothiazines , 1999 .
[24] F. Garnier. ORGANIC-BASED ELECTRONICS A LA CARTE , 1999 .
[25] R. Wortmann,et al. Organic Materials for Non‐Linear Optics: The 2D Approach , 1998 .
[26] Y. Yamashita,et al. Highly polarized electron donors, acceptors and donor–acceptor compounds for organic conductors , 1998 .
[27] Howard E. Katz,et al. Organic molecular solids as thin film transistor semiconductors , 1997 .
[28] H. Spreitzer,et al. Electron‐Transfer Chemistry and Redox‐Switching of Stilbene‐Like Heteroaromatic Compounds — Syntheses, Optoelectrochemical and ESR/ENDOR Studies , 1996 .
[29] H. Spreitzer,et al. Multi‐Mode Switching Based on Dihydroazulene/vinylheptafulvene Photochromism: Synergism of Photochromism and Redox Switching in Heteroaryl‐Functionalized Systems , 1996 .
[30] P. Günter,et al. Non‐classical donor–acceptor chromophores for second order nonlinear optics , 1996 .
[31] Alan R. Katritzky,et al. Comprehensive Heterocyclic Chemistry IV , 1996 .
[32] J. Daub,et al. Lumineszenz durch Elektronentransferaktivierung: fluoreszente Donor/Acceptor‐substituierte stilbenoide Verbindungen mit pyrenoiden und heteroaromatischen Teilstrukturen , 1995 .
[33] M. Lang,et al. Phenothiazin-Bipyridinium-Oligooxacyclophane , 1993 .
[34] H. Segawa,et al. One-dimensional donor-acceptor polymer: Phosphorus porphyrins linked with molecular wire , 1993 .
[35] Guilford Jones,et al. PHOTOINDUCED ELECTRON TRANSFER IN FLEXIBLE BIARYL DONOR-ACCEPTOR MOLECULES , 1993 .
[36] C. Bubeck. Advances in spectroscopy, Vol. 19, spectroscopy of advanced materials. Edited by R. J. H. Clark, R. E. Hester, John Wiley & Sons, Chichester 1991, XIX, 405 pp., £ 115, ISBN 0-471-92981-6 , 1992 .
[37] J. Brédas,et al. Electronic structure and nonlinear optical properties of push-pull conjugated molecules , 1992 .
[38] H. Ringsdorf,et al. Donor–acceptor substituted polyenes: Orientation in mono‐ and multilayers , 1992 .
[39] P. Bergés,et al. Structure, electrical conductivity and dielectric relaxation of the phenothiazine-tetracyanoethene 1:1 complex , 1992 .
[40] W. Jones,et al. Intramolecular electron transfer in rigid media at room temperature , 1992 .
[41] A. Harriman,et al. Charge transfer across oblique bisporphyrins: two-center photoactive molecules , 1991 .
[42] T. Meyer,et al. Long-Range, Light-Induced Redox Separation across a Ligand Bridge , 1990 .
[43] E. Nishiwaki,et al. Synthesis of nitrated oligo-N-methylpyrrole carboxamide derivatives and their photochemical DNA cleaving activities , 1990 .
[44] S. Kunte,et al. Solvent effects on electronic absorption spectra of nitrochlorobenzenes, nitrophenols and nitroanilines—lll. Excited state dipole moments and specific solute—solvent interaction energies employing Bakhshiev's approach , 1989 .
[45] J. Sauvage,et al. Ruthenium and osmium complexes of 2,2′ : 6′,2″-terpyridine covalently linked to electron acceptor and electron donor groups , 1989 .
[46] R. Gompper,et al. Donor‐acceptor‐substituierte cyclische π‐Elektronensysteme ‐ Prüfsteine für Theorien und Bausteine für neue Materialien , 1988 .
[47] H. Fujita,et al. UV-A induced DNA nicking activities of skin photosensitive drugs: phenothiazines, benzothiadiazines and afloqualone. , 1988, Chemico-biological interactions.
[48] G. Buettner,et al. SPECTROSCOPIC STUDIES OF CUTANEOUS PHOTOSENSITIZING AGENTS–VIII. A SPIN‐TRAPPING STUDY OF LIGHT INDUCED FREE RADICALS FROM CHLORPROMAZINE and PROMAZINE , 1985, Photochemistry and photobiology.
[49] J. Piette,et al. Induction of breaks in deoxyribonucleic acid by photoexcited promazine derivatives. , 1984, Biochemical pharmacology.
[50] H. Gerischer,et al. Electron Transfer Reactions at n‐GaP (100) and (111) in Acetonitrile Solutions Facilitated by Cation Adsorption , 1984 .
[51] Guilford Jones,et al. Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism , 1983 .
[52] R. Egdell,et al. Thionine coated electrode for photogalvanic cells , 1979, Nature.
[53] C. O. Okafor. STUDIES IN THE HETEROCYCLIC SERIES. XII. THE CHEMISTRY AND APPLICATIONS OF AZA AND THIA ANALOGS OF PHENOXAZINE AND RELATED COMPOUNDS , 1977 .
[54] J. L. Gillson,et al. Synthesis of electrically conductive organic solids , 1976 .
[55] H. Burrows,et al. Intermediates in the pulse radiolysis of solutions of phenothiazine and its derivatives: reactions of cycloalkylperoxyl radicals with phenothiazines , 1973 .
[56] Y. Iida. The Cation Radical Salts of Phenothiazine and Related Compounds , 1971 .
[57] I. Silberg,et al. Recent advances in the chemistry of phenothiazines. , 1968, Advances in heterocyclic chemistry.
[58] T. Urbański,et al. 1,3-OXAZINE DERIVATIVES. , 1963, Advances in heterocyclic chemistry.
[59] F. Forrest,et al. Free radicals as metabolites of drugs derived from phenothiazine. , 1958, Biochimica et biophysica acta.
[60] F. Mietzsch. Die Entwicklung der Antihistaminmittel und zentral dämpfenden Mittel , 1954 .