Stability number of bull- and chair-free graphs revisited

De Simone showed that prime bull- and chair-free graphs containing a co-diamond are either bipartite or an induced cycle of odd length at least five. Based on this result, we give a complete structural characterization of prime (bull,chair)-free graphs having stability number at least four as well as of (bull,chair,co-chair)-free graphs. This implies constant-bounded clique width for these graph classes which leads to linear time algorithms for some algorithmic problems. Moreover, we obtain a robust O(nm) time algorithm for the maximum weight stable set problem on bull-and chair-free graphs without testing whether the (arbitrary) input graph is bull- and chair-free. This improves previous results with respect to structural insight, robustness and time bounds.

[1]  Caterina De Simone,et al.  Stability Number of Bull- and Chair-Free Graphs , 1993, Discret. Appl. Math..

[2]  Stephan Olariu,et al.  A tree representation for P4-sparse graphs , 1992, Discret. Appl. Math..

[3]  Jeremy P. Spinrad,et al.  Linear-time modular decomposition and efficient transitive orientation of comparability graphs , 1994, SODA '94.

[4]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[5]  F. Radermacher,et al.  Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization , 1984 .

[6]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..

[7]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[8]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[9]  J. Shearer A Class of Perfect Graphs , 1982 .

[10]  Jens Gustedt,et al.  Efficient and practical modular decomposition , 1997, SODA '97.

[11]  Najiba Sbihi,et al.  Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile , 1980, Discret. Math..

[12]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[13]  Jean-Luc Fouquet A decomposition for a class of (P5, P5_5)-free graphs , 1993, Discret. Math..

[14]  Frederic Maire,et al.  On graphs without P5 and P5_ , 1995, Discret. Math..

[15]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[16]  C. De Simone,et al.  On the vertex packing problem , 1993, Graphs Comb..

[17]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[18]  Stephan Olariu,et al.  On the p-connectedness of Graphs - A Survey , 1999, Discret. Appl. Math..

[19]  George J. Minty,et al.  On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory, Ser. B.

[20]  Sophie Tison Trees in Algebra and Programming — CAAP'94 , 1994, Lecture Notes in Computer Science.

[21]  Udi Rotics,et al.  On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..

[22]  Udi Rotics,et al.  On the Clique-Width of Perfect Graph Classes , 1999, WG.

[23]  Andreas Brandstädt,et al.  (P5, diamond)-free graphs revisited: structure and linear time optimization , 2004, Discret. Appl. Math..