Polling: past, present, and perspective

This is a survey on polling systems, focussing on the basic single-server multi-queue polling system in which the server visits the queues in cyclic order. The main goals of the paper are: (i) to discuss a number of the key methodologies in analyzing polling models; (ii) to give an overview of recent polling developments; and (iii) to present a number of challenging open problems.

[1]  M. Vlasiou,et al.  M/G/∞ POLLING SYSTEMS WITH RANDOM VISIT TIMES , 2007, Probability in the Engineering and Informational Sciences.

[2]  Robert D. van der Mei,et al.  Applications of polling systems , 2011, ArXiv.

[3]  Mandyam M. Srinivasan,et al.  Relating polling models with zero and nonzero switchover times , 1995, Queueing Syst. Theory Appl..

[4]  Uri Yechiali,et al.  $M/G/\infty$ polling systems with random visit times : M/G/infinity polling systems with random visit times , 2007 .

[5]  L Fournier,et al.  EXPECTED WAITING TIMES IN CYCLIC SERVICE SYSTEMS UNDER PRIORITY , .

[6]  Eitan Altman,et al.  Continuous polling models and application to ferry assisted WLAN , 2012, Ann. Oper. Res..

[7]  Hanoch Levy,et al.  Optimization of Polling Systems , 1990, International Symposium on Computer Modeling, Measurement and Evaluation.

[8]  H. Levy,et al.  Polling systems with correlated arrivals , 1989, IEEE INFOCOM '89, Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies.

[9]  Sem C. Borst,et al.  Polling systems with multiple coupled servers , 1995, Queueing Syst. Theory Appl..

[10]  Kin K. Leung,et al.  Cyclic-Service Systems with Probabilistically-Limited Service , 1991, IEEE J. Sel. Areas Commun..

[11]  Onno Boxma,et al.  Two queues with alternating service and switching times , 1987 .

[12]  Duan Shin Lee ANALYSIS OF A TWO QUEUE MODEL WITH BERNOULLI SCHEDULES , 2003 .

[13]  Eitan Altman,et al.  Polling on a space with general arrival and service time distribution , 1997, Oper. Res. Lett..

[14]  Benny Van Houdt Numerical solution of polling systems for analyzing networks on chips , 2010 .

[15]  Wei Feng,et al.  PERFORMANCE ANALYSIS OF A TWO-QUEUE MODEL WITH AN (M,N)-THRESHOLD SERVICE SCHEDULE , 2001 .

[16]  U. Yechiali,et al.  Dynamic priority rules for cyclic-type queues , 1989, Advances in Applied Probability.

[17]  Dirk P. Kroese,et al.  A continuous polling system with general service times , 1991 .

[18]  Hideaki Takagi,et al.  Application of Polling Models to Computer Networks , 1991, Comput. Networks ISDN Syst..

[19]  H. Levy,et al.  Polling systems with simultaneous arrivals , 1991, IEEE Trans. Commun..

[20]  Sem C. Borst,et al.  Waiting-Time Approximations for Multiple-Server Polling Systems , 1998, Perform. Evaluation.

[21]  Eytan Modiano,et al.  Dynamic scheduling with reconfiguration delays , 2016, Queueing Syst. Theory Appl..

[22]  Jacques Resing,et al.  Reduction of a polling network to a single node , 2008, Queueing Syst. Theory Appl..

[23]  Ivo J. B. F. Adan,et al.  The shorter queue polling model , 2013, Annals of Operations Research.

[24]  R. D. van der Mei,et al.  Heavy traffic analysis of roving server networks , 2016, 1611.02608.

[25]  Lawrence M. Wein,et al.  The Stochastic Economic Lot Scheduling Problem: Heavy Traffic Analysis of Dynamic Cyclic Policies , 2015, Oper. Res..

[26]  Volker Schmidt,et al.  Single-server queues with spatially distributed arrivals , 1994, Queueing Syst. Theory Appl..

[27]  Hanoch Levy,et al.  Efficient Visit Orders for Polling Systems , 1993, Perform. Evaluation.

[28]  Richard J. Boucherie,et al.  A polling model with an autonomous server , 2007, Queueing Syst. Theory Appl..

[29]  Tava Lennon Olsen,et al.  Approximations for the waiting time distribution in polling models with and without state-dependent setups , 2001, Oper. Res. Lett..

[30]  Ivo J. B. F. Adan,et al.  A Two-Queue Polling Model with Two Priority Levels in the First Queue , 2010, Discret. Event Dyn. Syst..

[31]  Sem C. Borst,et al.  Markovian polling systems with an application to wireless random-access networks , 2015, Perform. Evaluation.

[32]  Hanoch Levy,et al.  On fairness in polling systems , 2016 .

[33]  R. D. van der Mei,et al.  Analysis of multiple-server polling systems by means of the power-series algorithm , 1994 .

[34]  Onno Boxma,et al.  Performance of large-scale polling systems with branching-type and limited service , 2019, Perform. Evaluation.

[35]  Dirk P. Kroese HEAVY TRAFFIC ANALYSIS FOR CONTINUOUS POLLING MODELS , 1995 .

[36]  Urtzi Ayesta,et al.  Sojourn times in a processor sharing queue with multiple vacations , 2012, Queueing Systems.

[37]  Sergey Foss,et al.  Stability and performance of greedy server systems , 2011, Queueing Syst. Theory Appl..

[38]  Gideon Weiss,et al.  Dynamic priority rules when polling with multiple parallel servers , 1992, Oper. Res. Lett..

[39]  Eytan Modiano,et al.  Dynamic reconfiguration and routing algorithms for IP-over-WDM networks with stochastic traffic , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[40]  Sem C. Borst,et al.  Polling Models With and Without Switchover Times , 1997, Oper. Res..

[41]  Moshe Sidi,et al.  A queueing network with a single cyclically roving server , 1992, Queueing Syst. Theory Appl..

[42]  Adam Wierman,et al.  Fairness and efficiency for polling models with the k-gated service discipline , 2012, Perform. Evaluation.

[43]  Sid Browne,et al.  Parallel Service with Vacations , 1995, Oper. Res..

[44]  Duan-Shin Lee,et al.  Queueing analysis of a threshold based priority scheme for ATM networks , 1993, TNET.

[45]  J. Walrand,et al.  The cμ rule revisited , 1985, Advances in Applied Probability.

[46]  P. Vis,et al.  Heavy-traffic limits for polling models with exhaustive service and non-FCFS service order policies , 2014, Advances in Applied Probability.

[47]  Hideaki Takagi,et al.  Analysis and Application of Polling Models , 2000, Performance Evaluation.

[48]  Serguei Foss,et al.  On polling systems with infinitely many stations , 1996 .

[49]  Michael J. Ferguson,et al.  Exact Results for Nonsymmetric Token Ring Systems , 1985, IEEE Trans. Commun..

[50]  Awi Federgruen,et al.  Approximating queue size and waiting time distributions in general polling systems , 1994, Queueing Syst. Theory Appl..

[51]  Isi Mitrani,et al.  Polling Models with Threshold Switching , 1995 .

[52]  Hanoch Levy,et al.  Pseudo-cyclic policies for multi-queue single server systems , 1994, Ann. Oper. Res..

[53]  Ivo J. B. F. Adan,et al.  A polling model with multiple priority levels , 2010, Perform. Evaluation.

[54]  Onno J. Boxma,et al.  Waiting-Time Approximations in Multi-Queue Systems with Cyclic Service , 1987, Perform. Evaluation.

[55]  Robert D. van der Mei,et al.  The impact of scheduling policies on the waiting-time distributions in polling systems , 2014, Queueing Systems.

[56]  N. I. Chernova,et al.  DOMINANCE THEOREMS AND ERGODIC PROPERTIES OF POLLING SYSTEMS 1 , 1996 .

[57]  Robert D. van der Mei,et al.  Waiting times in a two-queue model with exhaustive and Bernoulli service , 1994, Math. Methods Oper. Res..

[58]  Robert D. van der Mei,et al.  A note on polling models with renewal arrivals and nonzero switch-over times , 2008, Oper. Res. Lett..

[59]  Serguei Foss,et al.  Stability of polling systems with exhaustive service policies and state-dependent routing , 1996 .

[60]  M. Eisenberg Two Queues with Alternating Service , 1979 .

[61]  R. Luchsinger,et al.  Zentrale Hörstörungen mit Paramusie nach Contusio cerebri , 1947 .

[62]  Hanoch Levy,et al.  Cyclic reservation schemes for efficient operation of multiple-queue single-server systems , 1992, Ann. Oper. Res..

[63]  Edward G. Coffman,et al.  Polling Systems in Heavy Traffic: A Bessel Process Limit , 1998, Math. Oper. Res..

[64]  Jacques Resing Asymptotic results in feedback systems , 1990 .

[65]  Uri Yechiali,et al.  Polling in a Closed Network , 1994 .

[66]  Robert B. Cooper Queues served in cyclic order: Waiting times , 1970, Bell Syst. Tech. J..

[67]  Emm Erik Winands,et al.  Polling, production & priorities , 2007 .

[68]  Wei Feng,et al.  A two-queue model with Bernoulli service schedule and switching times , 1998, Queueing Syst. Theory Appl..

[69]  Hanoch Levy,et al.  Efficient analysis of polling systems , 1992, [Proceedings] IEEE INFOCOM '92: The Conference on Computer Communications.

[70]  Kow C. Chang,et al.  Mean Waiting Time Approximations in Cyclic-Service Systems with Exhaustive Limited Service Policy , 1992, Perform. Evaluation.

[71]  Phuoc Tran-Gia Analysis of polling systems with general input process and finite capacity , 1992, IEEE Trans. Commun..

[72]  Ivo J. B. F. Adan,et al.  Closed-form waiting time approximations for polling systems , 2011, Perform. Evaluation.

[73]  Micha Hofri,et al.  On the Optimal Control of Two Queues with Server Setup Times and its Analysis , 1987, SIAM J. Comput..

[74]  Philippe Robert,et al.  Traffic capacity of large WDM passive optical networks , 2010, 2010 22nd International Teletraffic Congress (lTC 22).

[75]  V. M. Vishnevskii,et al.  Mathematical methods to study the polling systems , 2006 .

[76]  Onno J. Boxma,et al.  Workloads and waiting times in single-server systems with multiple customer classes , 1989, Queueing Syst. Theory Appl..

[77]  Erik M. M. Winands,et al.  On open problems in polling systems , 2011, Queueing Syst. Theory Appl..

[78]  Naishuo Tian,et al.  Vacation Queueing Models , 2006 .

[79]  Edward G. Coffman,et al.  Two Queues with Alternating Service Periods , 1987, Performance.

[80]  Onno Boxma,et al.  Dynamic server assignment in a two-queue model , 1995 .

[81]  Toshihisa Ozawa,et al.  Alternating Service Queues with Mixed Exhaustive and K-Limited Services , 1990, Perform. Evaluation.

[82]  Ivo J. B. F. Adan,et al.  The analysis of batch sojourn-times in polling systems , 2017, Queueing Syst. Theory Appl..

[83]  M. Mandjes,et al.  Queues and Lévy fluctuation theory , 2015 .

[84]  Gordon F. Newell,et al.  An analysis of elevator operation in moderate height buildings—II: Multiple elevators , 1982 .

[85]  Sem C. Borst,et al.  The use of service limits for efficient operation of multistation single-medium communication systems , 1995, TNET.

[86]  L. Fournier,et al.  Expected waiting times in polling systems under priority disciplines , 1991, Queueing Syst. Theory Appl..

[87]  Yoshitaka Takahashi,et al.  A note on the pseudo-conservation law for a multi-queue with local priority , 1992, Queueing Syst. Theory Appl..

[88]  Robert D. van der Mei,et al.  Optimization of Polling Systems with Bernoulli Schedules , 1995, Perform. Evaluation.

[89]  Eitan Altman,et al.  On Elevator polling with globally gated regime , 1992, Queueing Syst. Theory Appl..

[90]  Leonard Kleinrock,et al.  Polling Systems with Zero Switch-Over Periods: A General Method for Analyzing the Expected Delay , 1991, Perform. Evaluation.

[91]  Martin Eisenberg,et al.  Queues with Periodic Service and Changeover Time , 1972, Oper. Res..

[92]  Philippe Robert,et al.  A mean field approximation for the capacity of server-limited, gate-limited multi-server polling systems , 2010, PERV.

[93]  S. G. Foss,et al.  On the Stability of a Queueing System with Uncountably Branching Fluid Limits , 2005, Probl. Inf. Transm..

[94]  Uri Yechiali,et al.  Fluid polling systems , 2009, Queueing Syst. Theory Appl..

[95]  Martin Eisenberg,et al.  The polling system with a stopping server , 1994, Queueing Syst. Theory Appl..

[96]  Onno Boxma,et al.  Lévy-driven polling systems and continuous-state branching processes , 2009, 1006.0384.

[97]  François Baccelli,et al.  Quantitative Methods in Parallel Systems , 1995, Esprit Basic Research Series.

[98]  Offer Kella,et al.  Queue-length balance equations in multiclass multiserver queues and their generalizations , 2017, Queueing Syst. Theory Appl..

[99]  Ger Koole,et al.  Asigning a Single Server to Inhomogeneous Queues with Switching Costs , 1997, Theor. Comput. Sci..

[100]  Offer Kella,et al.  Decomposition results for stochastic storage processes and queues with alternating Lévy inputs , 2012, Queueing Syst. Theory Appl..

[101]  Jacques Resing,et al.  Polling systems and multitype branching processes , 1993, Queueing Syst. Theory Appl..

[102]  Eitan Altman,et al.  Expected waiting time in symmetric polling systems with correlated walking times , 2007, Queueing Syst. Theory Appl..

[103]  Steve W. Fuhrmann,et al.  A decomposition result for a class of polling models , 1992, Queueing Syst. Theory Appl..

[104]  Jacques Resing,et al.  Heavy traffic analysis of a polling model with retrials and glue periods , 2017 .

[105]  Miloslav Jiřina,et al.  Stochastic branching processes with continuous state space , 1958 .

[106]  Ward Whitt,et al.  Computing Distributions and Moments in Polling Models by Numerical Transform Inversion , 1996, Perform. Evaluation.

[107]  Hideaki Takagi,et al.  Queueing analysis of polling models: progress in 1990-1994 , 1998 .

[108]  Dimitris Bertsimas,et al.  Multiclass Queueing Systems in Heavy Traffic: An Asymptotic Approach Based on Distributional and Conservation Laws , 1997, Oper. Res..

[109]  Robert D. van der Mei,et al.  Polling systems with periodic server routing in heavy traffic: renewal arrivals , 2005, Oper. Res. Lett..

[110]  Joseph B. Kruskal Work-scheduling algorithms: A nonprobabilistic queuing study (with possible application to no. 1 ESS) , 1969 .

[111]  Edward G. Coffman,et al.  A continuous polling system with constant service times , 1986, IEEE Trans. Inf. Theory.

[112]  Naishuo Tian,et al.  Vacation Queueing Models Theory and Applications , 2006 .

[113]  Bara Kim,et al.  Performance analysis of polling systems with retrials and glue periods , 2017, Queueing Syst. Theory Appl..

[114]  Onno J. Boxma,et al.  Sojourn times in polling systems with various service disciplines , 2009, Perform. Evaluation.

[115]  Lawrence M. Wein,et al.  Heavy Traffic Analysis of Polling Systems in Tandem , 2011, Oper. Res..

[116]  Robert B. Cooper,et al.  Stochastic Decompositions in the M/G/1 Queue with Generalized Vacations , 1985, Oper. Res..

[117]  Serguei Foss,et al.  A stability criterion via fluid limits and its application to a polling system , 1999, Queueing Syst. Theory Appl..

[118]  Shaler Stidham,et al.  The Relation between Customer and Time Averages in Queues , 1980, Oper. Res..

[119]  Marko Boon,et al.  Heavy-traffic analysis of k-limited polling systems , 2013 .

[120]  Miklós Telek,et al.  Unified analysis of BMAP/G/1 cyclic polling models , 2010, Queueing Syst. Theory Appl..

[121]  Robert D. van der Mei,et al.  Towards a unifying theory on branching-type polling systems in heavy traffic , 2007, Queueing Syst. Theory Appl..

[122]  Robert B. Cooper,et al.  Queues served in cyclic order , 1969 .

[123]  Moshe Sidi,et al.  Polling systems: applications, modeling, and optimization , 1990, IEEE Trans. Commun..

[124]  Otis B. Jennings Averaging Principles for a Diffusion-Scaled, Heavy-Traffic Polling Station with K Job Classes , 2010, Math. Oper. Res..

[125]  Paul E. Wright,et al.  GATED, EXHAUSTIVE, PARALLEL SERVICE , 1992 .

[126]  M. Reiman,et al.  Polling Systems with Zero Switchover Times: A Heavy-Traffic Averaging Principle , 1995 .

[127]  G. F. Newell,et al.  An analysis of elevator operation in moderate height buildings—II , 1982 .

[128]  M. Quine,et al.  The multitype Galton-Watson process with ρ near 1 , 1972 .

[129]  Bara Kim,et al.  Sojourn time distribution in polling systems with processor-sharing policy , 2017, Perform. Evaluation.

[130]  Offer Kella,et al.  Another look into decomposition results , 2013, Queueing Syst. Theory Appl..

[131]  Mandyam M. Srinivasan,et al.  A Decomposition Theorem for Polling Models: The Switchover Times are Effectively Additive , 1996, Oper. Res..

[132]  Serguei Foss,et al.  Stability of Polling Systems with State-Independent Routing , 2005 .

[133]  B. T. Doshi,et al.  Queueing systems with vacations — A survey , 1986, Queueing Syst. Theory Appl..

[134]  D. Everitt A conservation-type law for the token ring with limited service , 1986 .

[135]  L. D. Servi,et al.  The Distributional Form of Little's Law and the Fuhrmann-Cooper Decomposition , 2015 .

[136]  K. M. Kosinski,et al.  Queue lengths and workloads in polling systems , 2011, Oper. Res. Lett..

[137]  Adam Wierman,et al.  Scheduling in polling systems , 2007, Perform. Evaluation.

[138]  Daniel P. Heyman,et al.  Stochastic models in operations research , 1982 .

[139]  Onno J. Boxma,et al.  Waiting Times in Polling Systems with Markovian Server Routing , 1989, MMB.

[140]  David Everitt Simple Approximations for Token Rings , 1986, IEEE Trans. Commun..

[141]  Nikhil Bansal,et al.  Handling load with less stress , 2006, Queueing Syst. Theory Appl..

[142]  Oliver C. Ibe,et al.  Analysis of polling systems with mixed service disciplines , 1990 .

[143]  U. Yechiali,et al.  Polling systems with permanent and transient jobs , 1999 .

[144]  Serguei Foss,et al.  On the Stability of Greedy Polling Systems with General Service Policies , 1998, Probability in the Engineering and Informational Sciences.

[145]  R. B. Cooper,et al.  Application of decomposition principle in M/G/1 vacation model to two continuum cyclic queueing models — Especially token-ring LANs , 1985, AT&T Technical Journal.

[146]  Geert-Jan van Houtum,et al.  A STATE-DEPENDENT POLLING MODEL WITH k-LIMITED SERVICE , 2009, Probability in the Engineering and Informational Sciences.

[147]  Isaac Meilijson,et al.  On optimal right-of-way policies at a single-server station when insertion of idle times is permitted , 1977 .

[148]  Konstantin Avrachenkov,et al.  Finite-buffer polling systems with threshold-based switching policy , 2016 .

[149]  Ivo J. B. F. Adan,et al.  Mean value analysis for polling systems , 2006, Queueing Syst. Theory Appl..

[150]  Jean Walrand,et al.  The c# rule revisited , 1985 .

[151]  J.P.C. Blanc The power-series algorithm applied to cyclic polling systems , 1990 .

[152]  Iddo Eliazar From Polling to Snowplowing , 2005, Queueing Syst. Theory Appl..

[153]  Ivo J. B. F. Adan,et al.  Mixed gated/exhaustive service in a polling model with priorities , 2009, Queueing Syst. Theory Appl..

[154]  Ying-Chao Hung,et al.  Dynamic scheduling for switched processing systems with substantial service-mode switching times , 2008, Queueing Syst. Theory Appl..

[155]  Sem C. Borst,et al.  Optimization of fixed time polling schemes , 1994, Telecommun. Syst..

[156]  Tara Javidi,et al.  Adaptive Policies for Scheduling With Reconfiguration Delay: An End-to-End Solution for All-Optical Data Centers , 2017, IEEE/ACM Transactions on Networking.

[157]  Onno J. Boxma,et al.  Waiting-Time Approximations for Cyclic-Service Systems with Switchover Times , 1987, Perform. Evaluation.

[158]  Christine Fricker,et al.  Monotonicity and stability of periodic polling models , 1994, Queueing Syst. Theory Appl..

[159]  Iddo Eliazar Gated Polling Systems with Lévy Inflow and Inter-Dependent Switchover Times: A Dynamical-Systems Approach , 2005, Queueing Syst. Theory Appl..

[160]  Onno Boxma Analysis and optimization of polling systems , 1991 .

[161]  Steve W. Fuhrmann,et al.  Analysis of Cyclic Service Systems with Limited Service: Bounds and Approximations , 1988, Perform. Evaluation.

[162]  Mikko Alava,et al.  Branching Processes , 2009, Encyclopedia of Complexity and Systems Science.

[163]  Onno Boxma,et al.  Pseudo-conservation laws in cyclic-service systems , 1986 .

[164]  Nicholas Bambos,et al.  Queueing Dynamics and Maximal Throughput Scheduling in Switched Processing Systems , 2003, Queueing Syst. Theory Appl..