Some Generic Results on Algebraic Observability and Connections with Realization Theory

We analyze Glad/Fliess algebraic observability for polynomial control systems from a commutative algebraic/algebro-geometric point of view, using some results from the theory of Grobner bases. Furt ...

[1]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[2]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[3]  A. V. D. Wegen Representing a nonlinear state space system as a set of higher-order differential equations in the inputs and outputs , 1989 .

[4]  Krister Forsman On Rational State Space Realizations , 1992 .

[5]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[6]  Eduardo Sontag Polynomial Response Maps , 1979 .

[7]  S. T. Glad,et al.  Differential Algebraic Modelling of Nonlinear Systems , 1990 .

[8]  Krister Forsman,et al.  POLYCON-computer algebra software for polynomial control systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[9]  M. Reid,et al.  Commutative ring theory: Regular rings , 1987 .

[10]  Rodney Y. Sharp,et al.  Steps in Commutative Algebra: Commutative rings and subrings , 2001 .

[11]  B. Buchberger An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[12]  K. Forsman Localization and Base Change Techniques in Computational Algebra , 1993 .

[13]  A constructive approach to algebraic observability , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[14]  H. Bass,et al.  The Jacobian conjecture: Reduction of degree and formal expansion of the inverse , 1982 .

[15]  E. Netto Rationale Funktionen Mehrerer Veränderlichen , 1898 .

[16]  Torkel Glad,et al.  Nonlinear State Space and Input Output Descriptions using Differential Polynomials (Revised Version) , 1988 .

[17]  M. Fliess,et al.  Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[18]  Sette Diop,et al.  Elimination in control theory , 1991, Math. Control. Signals Syst..