Sandia Fracture Challenge 3: detailing the Sandia Team Q failure prediction strategy

The third Sandia Fracture Challenge highlighted the geometric and material uncertainties introduced by modern additive manufacturing techniques. Tasked with the challenge of predicting failure of a complex additively-manufactured geometry made of 316L stainless steel, we combined a rigorous material calibration scheme with a number of statistical assessments of problem uncertainties. Specifically, we used optimization techniques to calibrate a rate-dependent and anisotropic Hill plasticity model to represent material deformation coupled with a damage model driven by void growth and nucleation. Through targeted simulation studies we assessed the influence of internal voids and surface flaws on the specimens of interest in the challenge which guided our material modeling choices. Employing the Kolmogorov–Smirnov test statistic, we developed a representative suite of simulations to account for the geometric variability of test specimens and the variability introduced by material parameter uncertainty. This approach allowed the team to successfully predict the failure mode of the experimental test population as well as the global response with a high degree of accuracy.

[1]  R. Zamar,et al.  A multivariate Kolmogorov-Smirnov test of goodness of fit , 1997 .

[2]  K. Ravi-Chandar,et al.  The Sandia Fracture Challenge: blind round robin predictions of ductile tearing , 2014, International Journal of Fracture.

[3]  M. Ashby,et al.  Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics , 1982 .

[4]  M. F. Ashby,et al.  Intergranular fracture during power-law creep under multiaxial stresses , 1980 .

[5]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[6]  Mohamed S. Ebeida,et al.  Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis version 6.0 theory manual , 2020 .

[7]  Mark F. Horstemeyer,et al.  A void–crack nucleation model for ductile metals , 1999 .

[8]  Gianni Nicoletto,et al.  Anisotropic high cycle fatigue behavior of Ti–6Al–4V obtained by powder bed laser fusion , 2017 .

[9]  Michael Veilleux,et al.  A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling , 2018 .

[10]  C. Colin,et al.  As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting , 2011 .

[11]  James W. Foulk,et al.  The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal , 2019, International Journal of Fracture.

[12]  H. Ledbetter Monocrystal-Polycrystal Elastic Constants of a Stainless Steel , 1984, September 16, 1984.

[13]  J.-L. Chaboche,et al.  The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading , 2016, International Journal of Fracture.

[14]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[15]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[16]  J. Hutchinson,et al.  Modification of the Gurson Model for shear failure , 2008 .

[17]  René de Borst,et al.  Damage, Material Instabilities, and Failure , 2004 .

[18]  Hans Nordberg Note on the sensitivity of stainless steels to strain rate , 2004 .

[19]  Michael F. Ashby,et al.  Intergranular fracture during power-law creep , 1979 .

[20]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[21]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[22]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[23]  T. Niendorf,et al.  Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime , 2017 .

[24]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  Jorge J. Moré,et al.  User Guide for Minpack-1 , 1980 .

[26]  Frank Walther,et al.  Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties , 2014 .

[27]  Alejandro Mota,et al.  A class of variational strain‐localization finite elements , 2005 .

[28]  William Mark Scherzinger,et al.  A return mapping algorithm for isotropic and anisotropic plasticity models using a line search method , 2017 .

[29]  Arthur A. Brown,et al.  Sandia fracture challenge 2: Sandia California’s modeling approach , 2016, International Journal of Fracture.

[30]  W. King,et al.  An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel , 2014, Metallurgical and Materials Transactions A.

[31]  Arthur A. Brown,et al.  Validation of a model for static and dynamic recrystallization in metals , 2012 .