Linear Time Datalog for Branching Time Logic

In this paper we show that Datalog is well-suited as a temporal veriication language. Dat-alog is a well-known database query language relying on the logic programming paradigm. We introduce Datalog LITE, a fragment of Datalog with well-founded negation, and present a linear time model checking algorithm for Datalog LITE. We show that Datalog LITE subsumes temporal languages such as CTL and the alternation-free-calculus, and in fact give easy syntactic characterizations of these temporal languages. We prove that Datalog LITE has the same expressive power as the alternation-free portion of guarded xed point logic.

[1]  Andreas Podelski,et al.  Set-Based Analysis of Reactive Infinite-State Systems , 1998, TACAS.

[2]  E. Clarke,et al.  Automatic Veriication of Nite-state Concurrent Systems Using Temporal-logic Speciications. Acm , 1993 .

[3]  Georg Gottlob,et al.  Modular Logic Programming and Generalized Quantifiers , 1997, LPNMR.

[4]  Raghu Ramakrishnan,et al.  Review - Magic Sets and Other Strange Ways to Implement Logic Programs , 1999, ACM SIGMOD Digit. Rev..

[5]  Alon Itai,et al.  Unification as a Complexity Measure for Logic Programming , 1987, J. Log. Program..

[6]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[7]  Moshe Y. Vardi Reasoning about The Past with Two-Way Automata , 1998, ICALP.

[8]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[9]  Neil Immerman,et al.  Model Checking and Transitive-Closure Logic , 1997, CAV.

[10]  C. R. Ramakrishnan,et al.  Logic Programming and Model Checking , 1998, PLILP/ALP.

[11]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[12]  Rance Cleaveland,et al.  A linear-time model-checking algorithm for the alternation-free modal mu-calculus , 1993, Formal Methods Syst. Des..

[13]  John S. Schlipf,et al.  Computing Well-founded Semantics Faster , 1995, LPNMR.

[14]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[15]  Y. S. Ramakrishna,et al.  Eecient Model Checking Using Tabled Resolution ? , 1997 .

[16]  P. Boas Machine models and simulations , 1991 .

[17]  Adrian Walker,et al.  Towards a Theory of Declarative Knowledge , 1988, Foundations of Deductive Databases and Logic Programming..

[18]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[19]  Michel Minoux,et al.  LTUR: A Simplified Linear-Time Unit Resolution Algorithm for Horn Formulae and Computer Implementation , 1988, Inf. Process. Lett..

[20]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[21]  Henry D. Shapiro,et al.  Algorithms from P to NP , 1991 .

[22]  Masaki Murakami,et al.  A Declarative Semantics of Flat Guarded Horn Clauses for Programs with Perpetual Processes , 1990, Theor. Comput. Sci..

[23]  Erich Grädel,et al.  On the Restraining Power of Guards , 1999, Journal of Symbolic Logic.

[24]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[25]  A. Dawar FINITE MODEL THEORY (Perspectives in Mathematical Logic) , 1997 .

[26]  Elias Dahlhaus,et al.  Skolem Normal Forms Concerning the Least Fixpoint , 1987, Computation Theory and Logic.

[27]  maarten marx,et al.  Arrow logic and multi-modal logic , 1997 .