Review of contact and contactless active space debris removal approaches

[1]  P. Visser,et al.  Locally optimal control laws for Earth-bound solar sailing with atmospheric drag , 2022, Aerospace Science and Technology.

[2]  T. Hanada,et al.  Considerations on the lists of the top 50 debris removal targets , 2022, Journal of Space Safety Engineering.

[3]  Hao Wen,et al.  Model predictive control for spin-up maneuver of an electrodynamic tether system , 2021 .

[4]  G. A.,et al.  Debris collision mitigation from the ground using laser guide star adaptive optics at mount Stromlo observatory , 2021, Journal of Space Safety Engineering.

[5]  V. Aslanov,et al.  Detumbling of axisymmetric space debris during transportation by ion beam shepherd in 3D case , 2021, Advances in Space Research.

[6]  Vladimir S. Aslanov,et al.  Fuel costs estimation for ion beam assisted space debris removal mission with and without attitude control , 2021 .

[7]  Vera Mayorova,et al.  Analysis of the space debris objects nozzle capture dynamic processed by a telescopic robotic arm , 2021 .

[8]  Rongjie Kang,et al.  Design of a Flexible Capture Mechanism Inspired by Sea Anemone for Non-cooperative Targets , 2021, Chinese Journal of Mechanical Engineering.

[9]  V. Aslanov,et al.  Spatial Dynamics and Attitude Control During Contactless Ion Beam Transportation , 2021 .

[10]  Zhiwei Feng,et al.  A simplified model for fast analysis of the deployment dynamics of tethered-net in space , 2021 .

[11]  V. A. Kirillov,et al.  Problematic issues of spacecraft development for contactless removal of space debris by ion beam , 2021 .

[12]  Alessandro Rossi,et al.  Identifying the 50 statistically-most-concerning derelict objects in LEO , 2021 .

[13]  C. Phipps,et al.  Unintended consequences with laser nudging or re-entry of satellites , 2021 .

[14]  V. M. Kulkov,et al.  Problems of controlling the motion of small satellite using inflatable thin-film shells for removal space objects from orbit , 2021 .

[15]  D. F. Kavanagh,et al.  Electric Propulsion Methods for Small Satellites: A Review , 2021, Aerospace.

[16]  H. Yue,et al.  Prospects of de-tumbling large space debris using a two-satellite electromagnetic formation , 2021 .

[17]  Hiroaki Tanaka,et al.  Experimental Study on Penetration Characteristics of Metal Harpoons with Various Tip Shapes for Capturing Debris , 2021, The Proceedings of Mechanical Engineering Congress, Japan.

[18]  D. A. Grishko,et al.  Feasibility analysis of LEO and GEO large space debris de/re-orbiting taking into account launch mass of spacecraft-collector and its configuration layout , 2021 .

[19]  V. Aslanov,et al.  Space Debris Removal with Harpoon Assistance: Choice of Parameters and Optimization , 2020 .

[20]  S. Khoroshylov Relative control of an ion beam shepherd satellite in eccentric orbits , 2020 .

[21]  Quan Hu,et al.  Tethered towing of defunct satellites with solar panels , 2020 .

[22]  Minghe Jin,et al.  A novel strategy for space manipulator detumbling a non-cooperative target with collision avoidance , 2020 .

[23]  Xiaokui Yue,et al.  Bio-inspired anti-impact manipulator for capturing non-cooperative spacecraft: theory and experiment , 2020 .

[24]  J. Opiela,et al.  Evolution of ISO's space debris mitigation standards , 2020 .

[25]  T. Hanada,et al.  Impact on collision probability by post mission disposal and active debris removal , 2020 .

[26]  V. Aslanov,et al.  Chaotic motion of a cylindrical body during contactless transportation from MEO to LEO by ion beam , 2020, Nonlinear Dynamics.

[27]  David A. Spencer,et al.  The LightSail 2 solar sailing technology demonstration , 2020 .

[28]  K-T Brinkmann,et al.  Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer. , 2020, The Review of scientific instruments.

[29]  A. Ledkov Modeling the spatial motion of a space tether system with an inflatable balloon for raising payload orbit , 2020, 2020 International Conference on Information Technology and Nanotechnology (ITNT).

[30]  Cédric Dupont,et al.  Just in time collision avoidance – A review , 2020 .

[31]  C. Pardini,et al.  Environmental sustainability of large satellite constellations in low earth orbit , 2020 .

[32]  Hiroyuki Okamoto,et al.  Review of KITE – Electrodynamic tether experiment on the H-II Transfer Vehicle , 2020 .

[33]  S. Mitani,et al.  Efficiency Improving Guidance for Detumbling of Space Debris Using Thruster Plume Impingement , 2020, 2020 IEEE Aerospace Conference.

[34]  Kieran Wilson,et al.  Hybrid Method of Remote Sensing of Electrostatic Potential for Proximity Operations , 2020, 2020 IEEE Aerospace Conference.

[35]  D. B. Dobritsa,et al.  Study of the Efficiency of Corrugated Mesh Shields for Spacecraft Protection against Meteoroids and Manmade Space Debris , 2020 .

[36]  Vladimir S. Aslanov,et al.  Space Debris Attitude Control During Contactless Transportation in Planar Case , 2020 .

[37]  H. Schaub,et al.  Multisphere Method for Flexible Conducting Space Objects: Modeling and Experiments , 2020 .

[38]  François Chaumette,et al.  The active space debris removal mission RemoveDebris. Part 2: In orbit operations , 2020, Acta Astronautica.

[39]  Christophe Bonnal,et al.  CNES technical considerations on space traffic management , 2020 .

[40]  Jian Guo,et al.  An analysis of the flexibility modeling of a net for space debris removal , 2020 .

[41]  M. Smirnova,et al.  Design and Testing of a Double-Sided Ion Thruster for Ion-Beam Shepherd , 2020 .

[42]  V. Aslanov Dynamics and Control of a Two-Spacecraft Coulomb Formation: Challenges and Prospects , 2020, Journal of Physics: Conference Series.

[43]  H. Lewis Understanding long-term orbital debris population dynamics , 2019, Journal of Space Safety Engineering.

[44]  G. Sánchez-Arriaga,et al.  Electrical model and optimal design scheme for low work-function tethers in thrust mode , 2020 .

[45]  Shan Lu,et al.  Optimal control scheme of space tethered system for space debris deorbit , 2019 .

[46]  Guglielmo S. Aglietti,et al.  RemoveDEBRIS: An in-orbit demonstration of technologies for the removal of space debris , 2019, The Aeronautical Journal.

[47]  I. V. Usovik,et al.  International legal aspects of operations for active removal of space debris from near Earth outer space , 2019, XLIII ACADEMIC SPACE CONFERENCE: dedicated to the memory of academician S.P. Korolev and other outstanding Russian scientists – Pioneers of space exploration.

[48]  Chong Sun,et al.  Adaptive space debris capture approach based on origami principle , 2019, International Journal of Advanced Robotic Systems.

[49]  S. Khoroshylov Out-of-plane relative control of an ion beam shepherd satellite using yaw attitude deviations , 2019, Acta Astronautica.

[50]  V. Aslanov Debris removal in GEO by heavy orbital collector , 2019, Acta Astronautica.

[51]  V. V. Selivanov,et al.  Protection of inflatable modules of orbital stations against impacts of particles of space debris , 2019, Acta Astronautica.

[52]  Byungkyu Kim,et al.  Articulated linkage arms based reliable capture device for janitor satellites , 2019, Acta Astronautica.

[53]  V. Aslanov Spatial Dynamics and Control of a Two-Craft Coulomb Formation , 2019 .

[54]  Benjamin Bastida Virgili,et al.  Application of a debris index for global evaluation of mitigation strategies , 2019, Acta Astronautica.

[55]  V. Aslanov,et al.  Evolution of space tethered system’s orbit during space debris towing taking into account the atmosphere influence , 2019, Nonlinear Dynamics.

[56]  Hodei Urrutxua,et al.  A preliminary design procedure for an ion-beam shepherd mission , 2019, Aerospace Science and Technology.

[57]  Malcolm Macdonald,et al.  Review on solar sail technology , 2019, Astrodynamics.

[58]  V. Aslanov Gravitational Trap for Space Debris in Geosynchronous Orbit , 2019, Journal of Spacecraft and Rockets.

[59]  Surekha Kamath,et al.  Review of Active Space Debris Removal Methods , 2019, Space Policy.

[60]  Yingwu Fang,et al.  Effects of space-based nanosecond pulse laser driving centimeter-sized space debris in LEO , 2019, Optik.

[61]  H. Schaub,et al.  Detumbling Attitude Control Analysis Considering an Electrostatic Pusher Configuration , 2019, Journal of Guidance, Control, and Dynamics.

[62]  Rui Zhong,et al.  Attitude Stabilization of Tug–Towed Space Target by Thrust Regulation in Orbital Transfer , 2019, IEEE/ASME Transactions on Mechatronics.

[63]  Frederic Masson,et al.  SRM plume: A candidate as space debris braking system for Just-In-Time Collision avoidance maneuver , 2017, Acta Astronautica.

[64]  A. G. Toporkov,et al.  Using the Technology of Inflatable Structures for the Removal of Spacecraft’s from Low Orbits , 2019, International Journal of Mechanical Engineering and Robotics Research.

[65]  Zhai Guang,et al.  Optimal deployment of spin-stabilized tethered formations with continuous thrusters , 2018, Nonlinear Dynamics.

[66]  Hanspeter Schaub,et al.  Contactless electrostatic detumbling of axi-symmetric GEO objects with nominal pushing or pulling , 2018, Advances in Space Research.

[67]  Hong Liu,et al.  A Novel Deployable Capture Mechanism Based on Bennett Networks for Active Debris Removal , 2018, 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[68]  C. Bombardelli,et al.  Relative control of an ion beam shepherd satellite using the impulse compensation thruster , 2018, Acta Astronautica.

[69]  S. Flegel,et al.  Space debris collision probability analysis for proposed global broadband constellations , 2018, Acta Astronautica.

[70]  C. Charles,et al.  Demonstrating a new technology for space debris removal using a bi-directional plasma thruster , 2018, Scientific Reports.

[71]  V. Aslanov,et al.  Attitude motion of space debris during its removal by ion beam taking into account atmospheric disturbance , 2018, Journal of Physics: Conference Series.

[72]  Paolo Gasbarri,et al.  A parametric analysis of a controlled deployable space manipulator for capturing a non-cooperative flexible satellite , 2018, Acta Astronautica.

[73]  Naomi Murakami,et al.  Contactless Space Debris Detumbling: A Database Approach Based on Computational Fluid Dynamics , 2018, Journal of Guidance, Control, and Dynamics.

[74]  Yizhai Zhang,et al.  A review of space tether in new applications , 2018, Nonlinear Dynamics.

[75]  Shijie Xu,et al.  Neural-network-based terminal sliding-mode control for thrust regulation of a tethered space-tug , 2018, Astrodynamics.

[76]  F. Cichocki,et al.  Spacecraft-plasma-debris interaction in an ion beam shepherd mission , 2018 .

[77]  Antonios Tsourdos,et al.  Attitude control analysis of tethered de-orbiting , 2018 .

[78]  V. Aslanov,et al.  Motion Control of Space Tug During Debris Removal by a Coulomb Force , 2018, Journal of Guidance, Control, and Dynamics.

[79]  Luciano Anselmo,et al.  Evaluating the environmental criticality of massive objects in LEO for debris mitigation and remediation , 2018 .

[80]  Dongping Jin,et al.  Review of deployment technology for tethered satellite systems , 2018 .

[81]  M. Reza Emami,et al.  Assessment of active methods for removal of LEO debris , 2018 .

[82]  Panfeng Huang,et al.  Dynamic modeling and Super-Twisting Sliding Mode Control for Tethered Space Robot , 2018 .

[83]  Phillip Anz-Meador,et al.  Orbital Debris Quarterly News , 2018 .

[84]  C. Colombo,et al.  Planar Orbit and Attitude Dynamics of an Earth-Orbiting Solar Sail Under J2 and Atmospheric Drag Effects , 2018 .

[85]  Jingyang Li,et al.  Dynamics and control for contactless interaction between spacecraft and tumbling debris , 2018 .

[86]  G. Sánchez-Arriaga,et al.  Modeling and Performance of Electrodynamic Low-Work-Function Tethers with Photoemission Effects , 2018 .

[87]  L. Videau,et al.  Laser impulse coupling measurements at 400 fs and 80 ps using the LULI facility at 1057 nm wavelength , 2017 .

[88]  Inna Sharf,et al.  Experiments and simulation of a net closing mechanism for tether-net capture of space debris , 2017 .

[89]  Emma Kerr,et al.  Taxonomy and analysis of issues facing post mission disposal concept , 2017 .

[90]  V. Aslanov Exact solutions and adiabatic invariants for equations of satellite attitude motion under Coulomb torque , 2017 .

[91]  Qingyu Gao,et al.  Study on launch scheme of space-net capturing system , 2017, PloS one.

[92]  Panfeng Huang,et al.  Attitude control of towed space debris using only tether , 2017 .

[93]  Donald Ruffatto,et al.  An electrostatic gripper for flexible objects , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[94]  V. Obukhov,et al.  Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects. , 2017, The Review of scientific instruments.

[95]  V. Aslanov Dynamics of a Satellite with Flexible Appendages in the Coulomb Interaction , 2017 .

[96]  Eberhard Gill,et al.  Validation of Space Net Deployment Modeling Methods Using Parabolic Flight Experiment , 2017 .

[97]  Shaker A. Meguid,et al.  Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers , 2017 .

[98]  Mark R. Cutkosky,et al.  A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity , 2017, Science Robotics.

[99]  D. Mckenzie,et al.  Electrodeless plasma thrusters for spacecraft: a review , 2017 .

[100]  F. Cichocki,et al.  Electric Propulsion Subsystem Optimization for “Ion Beam Shepherd” Missions , 2017 .

[101]  Eberhard Gill,et al.  Deployment dynamics of tethered-net for space debris removal , 2017 .

[102]  V. Aslanov,et al.  TETHER LENGTH CONTROL IN TETHER-ASSISTED DEORBITING MISSION FROM AN ELLIPTICAL ORBIT , 2017 .

[103]  V. Aslanov,et al.  Attitude Motion of Cylindrical Space Debris during Its Removal by Ion Beam , 2017 .

[104]  Inna Sharf,et al.  Contact Dynamics Modeling and Simulation of Tether Nets for Space-Debris Capture , 2017 .

[105]  Scott J.I. Walker,et al.  Guidance, navigation, and control for the eddy brake method , 2017 .

[106]  Kjetil Wormnes,et al.  Validated simulator for space debris removal with nets and other flexible tethers applications , 2016 .

[107]  Vladimir S. Aslanov,et al.  Chaos Behavior of Space Debris During Tethered Tow , 2016 .

[108]  Bo Fu,et al.  Solar sail technology—A state of the art review , 2016 .

[109]  Jianjun Wu,et al.  A novel laser ablation plasma thruster with electromagnetic acceleration , 2016 .

[110]  Zheng H. Zhu,et al.  Mission Design for a CubeSat Deorbit Experiment Using an Electrodynamic Tether , 2016 .

[111]  Michèle Lavagna,et al.  Multibody dynamics driving GNC and system design in tethered nets for active debris removal , 2016 .

[112]  Paolo Gasbarri,et al.  Elastic issues and vibration reduction in a tethered deorbiting mission , 2016 .

[113]  Stéphane Mazouffre,et al.  Electric propulsion for satellites and spacecraft: established technologies and novel approaches , 2016 .

[114]  Erwin Mooij,et al.  Tether Dynamics Analysis and Guidance and Control Design for Active Space-Debris Removal , 2016 .

[115]  Vladimir S. Aslanov,et al.  Swing principle for deployment of a tether-assisted return mission of a re-entry capsule , 2016 .

[116]  Rumi Nakamura,et al.  Active Spacecraft Potential Control Investigation , 2016 .

[117]  A. A. Fokov,et al.  Determination of the force transmitted by an ion thruster plasma plume to an orbital object , 2016 .

[118]  V. V. Sinolits,et al.  Comparison of Coulomb-2, NASCAP-2K, MUSCAT and SPIS codes for geosynchronous spacecraft charging , 2016 .

[119]  Eberhard Gill,et al.  Review and comparison of active space debris capturing and removal methods , 2016 .

[120]  Claude R. Phipps,et al.  A spaceborne, pulsed UV laser system for re-entering or nudging LEO debris, and re-orbiting GEO debris , 2016 .

[121]  H. Schaub,et al.  Touchless Electrostatic Three-dimensional Detumbling of Large Axi-symmetric Debris , 2015 .

[122]  Stefanos Fasoulas,et al.  Performance model for space-based laser debris sweepers , 2015 .

[123]  Alessandro Rossi,et al.  The Criticality of Spacecraft Index , 2015 .

[124]  Sean Tuttle,et al.  Harpoon technology development for the active removal of space debris , 2015 .

[125]  S. Flegel,et al.  ORDEM 3.0 and MASTER-2009 modeled debris population comparison ☆ , 2015 .

[126]  Raymond J. Sedwick,et al.  Despinning Orbital Debris Before Docking Using Laser Ablation , 2015 .

[127]  Massimiliano Vasile,et al.  Detumbling large space debris via laser ablation , 2015, 2015 IEEE Aerospace Conference.

[128]  Vladimir S. Aslanov,et al.  Dynamics, analytical solutions and choice of parameters for towed space debris with flexible appendages , 2015 .

[129]  Hanspeter Schaub,et al.  Tethered towing using open-loop input-shaping and discrete thrust levels , 2014 .

[130]  Gerard Mourou,et al.  ICAN: A novel laser architecture for space debris removal , 2014 .

[131]  C. Phipps L'ADROIT - A spaceborne ultraviolet laser system for space debris clearing , 2014 .

[132]  Massimiliano Vasile,et al.  Improved laser ablation model for asteroid deflection , 2014 .

[133]  Shuang-yan Shen,et al.  Cleaning space debris with a space-based laser system , 2014 .

[134]  F. Cichocki,et al.  Modeling and Simulation of EP Plasma Plume Expansion into Vacuum , 2014 .

[135]  Ou Ma,et al.  A review of space robotics technologies for on-orbit servicing , 2014 .

[136]  Panfeng Huang,et al.  Post-capture attitude control for a tethered space robot–target combination system , 2014, Robotica.

[137]  M. Merino,et al.  THE FP7 LEOSWEEP PROJECT: IMPROVING LOW EARTH ORBIT SECURITY WITH ENHANCED ELECTRIC PROPULSION , 2014 .

[138]  Claude R. Phipps,et al.  A laser-optical system to re-enter or lower low Earth orbit space debris , 2014 .

[139]  H. Schaub,et al.  Prospects of Relative Attitude Control Using Coulomb Actuation , 2013 .

[140]  Masaru Uchiyama,et al.  Detumbling an uncontrolled satellite with contactless force by using an eddy current brake , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[141]  H. Schaub,et al.  Optimization of Sphere Population for Electrostatic Multi-Sphere Method , 2013, IEEE Transactions on Plasma Science.

[142]  C. Levit,et al.  LightForce Photon-Pressure Collision Avoidance: Efficiency Assessment on an Entire Catalogue of Space Debris , 2013 .

[143]  C. Phipps,et al.  Pulsed laser interactions with space debris: Target shape effects , 2013, 1305.3659.

[144]  Daniele Mortari,et al.  Removing Space Debris Through Sequential Captures and Ejections , 2013 .

[145]  Christophe Bonnal,et al.  Active debris removal: Recent progress and current trends , 2013 .

[146]  H. Schaub,et al.  Relative Motion Control For Two-Spacecraft Electrostatic Orbit Corrections , 2013 .

[147]  H. Schaub,et al.  Multi-Sphere Method for modeling spacecraft electrostatic forces and torques , 2013 .

[148]  Alberto Guillen Salas,et al.  LightForce: An Update on Orbital Collision Avoidance Using Photon Pressure , 2012 .

[149]  E. Ahedo,et al.  Hall Effect Thruster Plasma Plume Characterization with Probe Measurements and Self-Similar Fluid Models , 2012 .

[150]  N. Petit,et al.  Study on the eddy current damping of the spin dynamics of space debris from the Ariane launcher upper stages , 2012 .

[151]  D. F. Moorer,et al.  Geosynchronous Large Debris Reorbiter: Challenges and Prospects , 2012 .

[152]  J. Sanmartín,et al.  Low Work-Function Coating for an Entirely Propellantless Bare Electrodynamic Tether , 2012, IEEE Transactions on Plasma Science.

[153]  K. Baker,et al.  Removing orbital debris with lasers , 2011, 1110.3835.

[154]  Kentaro Iki,et al.  Experiments and numerical simulations of an electrodynamic tether deployment from a spool-type reel using thrusters , 2012 .

[155]  J. Álvarez,et al.  Relative Dynamics and Control of an Ion Beam Shepherd Satellite , 2012 .

[156]  Hodei Urrutxua Cereijo,et al.  Hypersonic Plasma Plume Expansion in Space , 2011 .

[157]  Carmen Pardini,et al.  Physical properties and long-term evolution of the debris clouds produced by two catastrophic collisions in Earth orbit , 2011 .

[158]  C. Levit,et al.  Orbital debris–debris collision avoidance , 2011, 1103.1690.

[159]  C. Bombardelli,et al.  Ion Beam Shepherd for Contactless Space Debris Removal , 2011, 1102.1289.

[160]  M. Andrenucci,et al.  Low-thrust Missions for Expanding Foam Space Debris Removal , 2011 .

[161]  Rui Zhong,et al.  Deorbiting Dynamics of Electrodynamic Tether , 2011 .

[162]  Hirotaka Sawada,et al.  Flight status of IKAROS deep space solar sail demonstrator , 2011 .

[163]  Kim M. Aaron,et al.  Gossamer Orbit Lowering Device (GOLD) for Safe and Efficient De-orbit , 2010 .

[164]  Max M. Michaelis,et al.  Review: Laser-Ablation Propulsion , 2010 .

[165]  Hiroshi Hirayama,et al.  Practical guidelines for electro-dynamic tethers to survive from orbital debris impacts , 2010 .

[166]  Manuel Martinez-Sanchez,et al.  Electrodynamic Tether Applications and Constraints , 2010 .

[167]  J.-C. Liou,et al.  Controlling the growth of future LEO debris populations with active debris removal , 2010 .

[168]  Jan Stupl,et al.  Assessment of Long Range Laser Weapon Engagements: The Case of the Airborne Laser , 2010 .

[169]  Marco Ceccarelli,et al.  An Optimization Problem Algorithm for Kinematic Design of Mechanisms for Two-Finger Grippers , 2009 .

[170]  Michiel Kruijff,et al.  Qualification and in-flight demonstration of a European tether deployment system on YES2 , 2009 .

[171]  Kei Senda,et al.  Simple and Small De-orbiting Package for Nano-Satellites Using an Inflatable Balloon , 2009 .

[172]  H. Yamakawa,et al.  Two-Craft Coulomb-Force Formation Dynamics and Stability Analysis with Debye Length Characteristics , 2008 .

[173]  Paul Williams,et al.  Optimal Deployment/Retrieval of Tethered Satellites , 2008 .

[174]  Matthew P. Cartmell,et al.  A review of space tether research , 2008 .

[175]  Frank Schäfer,et al.  Selecting enhanced space debris shields for manned spacecraft , 2006 .

[176]  K. Kumar Review of Dynamics and Control of Nonelectrodynamic Tethered Satellite Systems , 2006 .

[177]  H. Schaub,et al.  Linear Dynamics and Stability Analysis of a Two-Craft Coulomb Tether Formation , 2006 .

[178]  Ian D. Walker,et al.  Design and experimental testing of the OctArm soft robot manipulator , 2006, SPIE Defense + Commercial Sensing.

[179]  J. Angel Borja,et al.  Deorbit Process Using Solar Radiation Force , 2006 .

[180]  Ernst Messerschmid,et al.  Optimization of the tether-assisted return mission of a guided re-entry capsule , 2005 .

[181]  A. G. Korsun,et al.  Simulation of plasma plume-to-spacecraft interaction , 2004, Comput. Phys. Commun..

[182]  Lu Hong,et al.  Groups of diverse problem solvers can outperform groups of high-ability problem solvers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[183]  Kazuya Yoshida,et al.  Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite , 2004, Adv. Robotics.

[184]  Robert Twiggs,et al.  The Multi-Application Survivable Tether (MAST) Experiment , 2003 .

[185]  Satomi Kawamoto,et al.  Study on electrodynamic tether system for space debris removal , 2004 .

[186]  L. Kerstein,et al.  ROGER - Robotic Geostationary Orbit Restorer , 2003 .

[187]  Heiner Klinkrad,et al.  Comparison of debris flux models , 2002 .

[188]  C. R. Phipps,et al.  Diode Laser-Driven Microthrusters: A New Departure for Micropropulsion , 2002 .

[189]  Matthew P. Cartmell,et al.  Using motorized tethers for payload orbital transfer , 2001 .

[190]  R. Forward,et al.  Terminator Tether: A Spacecraft Deorbit Device , 2000 .

[191]  M. Martinez-Sanchez,et al.  Spacecraft Electric Propulsion—An Overview , 1998 .

[192]  Robert C. Reynolds,et al.  Postmission disposal options for upper stages , 1997, Optics & Photonics.

[193]  D. Gavel,et al.  ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser , 1996 .

[194]  K. Naishadham,et al.  Feasibility of noncontacting electromagnetic despinning of a satellite by inducing eddy currents in its skin. I. Analytical considerations , 1995 .

[195]  Eduardo Ahedo,et al.  Bare wire anodes for electrodynamic tethers , 1993 .

[196]  B. Borisov,et al.  The influence of an electric thruster plasma plume on downlink communications in space experiments , 1991 .

[197]  D. Kessler,et al.  Collision frequency of artificial satellites: The creation of a debris belt , 1978 .

[198]  W. E. Moeckel,et al.  Optimum exhaust velocity for laser-driven rockets , 1975 .

[199]  Eugen Sängeru,et al.  Strahlungsquellen für Photonenstrahlantriebe , 1959 .