An interior inverse problem for the Sturm-Liouville operator with discontinuous conditions

Abstract In this work, we study the inverse problem for the Sturm–Liouville operator − D 2 + q with discontinuity boundary conditions inside a finite closed interval. Using spectral data of a kind, it is shown that the potential function q ( x ) can be uniquely determined by a set of values of eigenfunctions at some internal point and one spectrum.

[1]  R. Krueger Inverse problems for nonabsorbing media with discontinuous material properties , 1982 .

[2]  O. Hald Discontinuous inverse eigenvalue problems , 1984 .

[3]  B. Simon,et al.  Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum , 1999 .

[4]  R. Anderssen The effect of discontinuities in density and shear velocity on the asymptotic overtone structure of torsional eigenfrequencies of the Earth , 1977 .

[5]  J. McLaughlin Inverse spectral theory using nodal points as data—A uniqueness result , 1988 .

[6]  B. M. Levitan ON THE DETERMINATION OF THE STURM-LIOUVILLE OPERATOR FROM ONE AND TWO SPECTRA , 1978 .

[7]  V. Yurko Method of Spectral Mappings in the Inverse Problem Theory , 2002 .

[8]  K. Mochizuki,et al.  INVERSE PROBLEM FOR INTERIOR SPECTRAL DATA OF THE DIRAC OPERATOR , 2002 .

[9]  D. Alpay,et al.  Inverse problems associated to a canonical differential system , 2001 .

[10]  Göran Borg Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe , 1946 .

[11]  Ole H. Hald,et al.  Solution of inverse nodal problems , 1989 .

[12]  V. Ambarzumian Über eine Frage der Eigenwerttheorie , 1929 .

[13]  C. Law,et al.  Remarks on a New Inverse Nodal Problem , 2000 .

[14]  M. Horvath Inverse spectral problems and closed exponential systems , 2005 .

[15]  ADDENDUM: Reconstructing the potential function and its derivatives using nodal data , 1998 .

[16]  K. Mochizuki,et al.  Inverse problem for interior spectral data of the Sturm – Liouville operator , 2001 .

[17]  Levitan,et al.  Sturm―Liouville and Dirac Operators , 1990 .

[18]  Chung-Tsun Shieh,et al.  Inverse nodal and inverse spectral problems for discontinuous boundary value problems , 2008 .

[19]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[20]  G. Freiling,et al.  Inverse spectral problems for singular non-selfadjoint differential operators with discontinuities in an interior point , 2002 .

[21]  V. Yurko Integral transforms connected with discontinuous boundary value problems , 2000 .

[22]  B. M. Levitan,et al.  Inverse Sturm-Liouville Problems , 1987 .

[23]  Gerhard Freiling,et al.  Inverse Sturm-Liouville problems and their applications , 2001 .

[24]  Alexander G. Ramm,et al.  Property C for ODE and applications to inverse problems. , 1999 .

[25]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[26]  H. Hochstadt,et al.  AN INVERSE STURM-LIOUVILLE PROBLEM WITH MIXED GIVEN DATA* , 1978 .

[27]  Xuewei Yang A solution of the inverse nodal problem , 1997 .

[28]  R. Carlson Inverse Spectral Theory for Some Singular Sturm-Liouville Problems , 1993 .