The second and third optic ganglia of the worker bee

SummaryThe gross morphology and the fine-structural characteristics of neurones of the second and third optic ganglia of the honeybee Apis mellifera were investigated light microscopically on the basis of Golgi (selective silver)- and reduced silver preparations.The second optic ganglion, the medulla, is ovoid in shape and has a slightly convex distal surface and a slightly concave proximal surface. The medullar outer levels are characteristically composed of neuronal arrangements showing strict precision of their geometrical spacing proximally as far as a pronounced layer of tangential fibre elements comprising the serpentine layer of the medulla. At the inner medullary levels retinotopic channels are again multiplied, and the arrangement of axons and dendrites contribute to a complex lattice.The third optic ganglion, the lobula, is interposed between the medulla and the protocerebrum. It is the site of termination of the third-order neurones. The lobula in hymenopterans appears, in contrast to dipterans, odonates and lepidopterans, as a single neuropilic mass.A short review of the electrophysiological data concerning these two ganglia has been tentatively correlated with some of the anatomical data.

[1]  S. D. Carlson,et al.  Close apposition of photoreceptor cell axons in the house fly. , 1976, Journal of insect physiology.

[2]  Boschek Cb On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. , 1971 .

[3]  W. Ribi The first optic ganglion of the bee , 1979, Cell and Tissue Research.

[4]  N. J. Strausfeld,et al.  The columnar organization of the second synaptic region of the visual system of Musca domestica L. , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[5]  R. Menzel,et al.  Chromatic properties of interneurons in the optic lobes of the bee , 1977, Journal of comparative physiology.

[6]  H. Eckert,et al.  Response properties of dipteran giant visual interneurones involved in control of optomotor behaviour , 1978, Nature.

[7]  F. C. Kenyon The Optic Lobes of the Bee's Brain in the Light of Recent Neurological Methods , 1897, The American Naturalist.

[8]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[9]  V. Braitenberg,et al.  Ordnung und Orientierung der Elemente im Sehsystem der Fliege , 1970, Kybernetik.

[10]  R. Menzel,et al.  Chromatic properties of interneurons in the optic lobes of the bee , 2004, Journal of comparative physiology.

[11]  Hendrik Eckert,et al.  Functional properties of the H1-neurone in the third optic Ganglion of the Blowfly,Phaenicia , 1980, Journal of comparative physiology.

[12]  V. Braitenberg Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.

[13]  K. Hausen Functional Characterization and Anatomical Identification of Motion Sensitive Neurons in the Lobula plate of the Blowfly Calliphora erythrocephala , 1976 .

[14]  W. Ribi The Organization of the Lamina ganglionaris of the Bee , 1975 .

[15]  W. H. Miller,et al.  Comparative Physiology and Evolution of Vision in Invertebrates , 2011, Handbook of Sensory Physiology.

[16]  R. Wehner,et al.  The retina-lamina projection in the visual system of the bee, Apis mellifera , 1975, Cell and Tissue Research.

[17]  H. Hertel Chromatic properties of identified interneurons in the optic lobes of the bee , 1980, Journal of comparative physiology.

[18]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .

[19]  N. Strausfeld,et al.  Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly's eye. , 1973, Brain research.

[20]  O. Trujillo-Cenóz Some aspects of the structural organization of the intermediate retina of dipterans. , 1965, Journal of ultrastructure research.

[21]  O. Trujillo-Cenóz,et al.  Light and electronmicroscope study of one of the systems of centrifugal fibers found in the lamina of muscoid flies , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[22]  K. Mimura Movement discrimination by the visual system of flies , 1971, Zeitschrift für vergleichende Physiologie.

[23]  N. Strausfeld,et al.  The optic lobes of Lepidoptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  Nicholas J. Strausfeld,et al.  The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris , 1970, Zeitschrift für vergleichende Physiologie.

[25]  F. G. Varela,et al.  Fine structure of the visual system of the honeybee (Apis mellifera). I. The retina. , 1969, Journal of ultrastructure research.

[26]  G. Bruce Boschek,et al.  On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[27]  W. Ribi,et al.  Gap junctions coupling photoreceptor axons in the first optic ganglion of the fly , 1978, Cell and Tissue Research.

[28]  Dr. Willi A. Ribi,et al.  The Neurons of the First Optic Ganglion of the Bee (Apis mellifera) , 1975, Advances in Anatomy, Embryology and Cell Biology / Ergebnisse der Anatomie und Entwicklungsgeschichte / Revues d’anatomie et de morphologie expérimentale.

[29]  F. C. Kenyon The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda , 1896 .

[30]  Bertil Hanström Vergleichende Anatomie des Nervensystems der wirbellosen Tiere: unter Berücksichtigung seiner Funktion , 1929, Nature.

[31]  Robert D. DeVoe,et al.  Movement sensitivities of cells in the fly's medulla , 1980, Journal of comparative physiology.

[32]  H. Eckert,et al.  Anatomical and physiological properties of the vertical cells in the third optic ganglion ofPhaenicia sericata (Diptera, Calliphoridae) , 1978, Journal of comparative physiology.

[33]  W. Ribi Neurons in the first synaptic region of the bee, Apis mellifera , 1974, Cell and Tissue Research.

[34]  Nicholas J. Strausfeld,et al.  Principles of the Mosaic Organisation in the Visual System’s Neuropil of Musca domestica L , 1973 .

[35]  S. D. Carlson,et al.  High voltage electron microscopy of the optic neuropile of the housefly, Musca domestica , 1976, Cell and Tissue Research.

[36]  Lewis G. Bishop,et al.  On the identification of movement detectors in the fly optic lobe , 2004, Journal of comparative physiology.

[37]  W. Ribi The first optic ganglion of the bee , 2004, Cell and Tissue Research.

[38]  W. Ribi The first optic ganglion of the bee , 1976, Cell and Tissue Research.

[39]  N. J. Strausfeld,et al.  The organization of the insect visual system (Light microscopy) , 1971, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[40]  N. Strausfeld Mosaic Organizations, Layers, and Visual Pathways in the Insect Brain , 1976 .

[41]  S. J. Hickson Memoirs: The Eye and Optic Tract of Insects , 1885 .

[42]  N. Strausfeld The optic lobes of Diptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[43]  S. D. Carlson,et al.  Membrane specializations in the first optic neuropil of the housefly, Musca domestica L. I. Junctions between neurons. , 1980, Journal of neurocytology.

[44]  O. Trujillo-Cenóz,et al.  The fine structure of the central cells in the ommatidia of dipterans. , 1967, Journal of ultrastructure research.