Short-Time Expansions for Call Options on Leveraged ETFs Under Exponential Lévy Models with Local Volatility

In this article, we consider the small-time asymptotics of options on a \emph{Leveraged Exchange-Traded Fund} (LETF) when the underlying Exchange Traded Fund (ETF) exhibits both local volatility and jumps of either finite or infinite activity. Our main results are closed-form expressions for the leading order terms of off-the-money European call and put LETF option prices, near expiration, with explicit error bounds. We show that the price of an out-of-the-money European call on a LETF with positive (negative) leverage is asymptotically equivalent, in short-time, to the price of an out-of-the-money European call (put) on the underlying ETF, but with modified spot and strike prices. Similar relationships hold for other off-the-money European options. In particular, our results suggest a method to hedge off-the-money LETF options near expiration using options on the underlying ETF. Finally, a second order expansion for the corresponding implied volatility is also derived and illustrated numerically.

[1]  B. Marchal,et al.  Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel , 1976 .

[2]  R. Léandre,et al.  Densite en temps petit d'un processus de sauts , 1987 .

[3]  Bruno Dupire Pricing with a Smile , 1994 .

[4]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[5]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[6]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[7]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[8]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[9]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[10]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[11]  Guo Dong Zhu Pricing options on trading strategies , 2007 .

[12]  Elton P. Hsu,et al.  ASYMPTOTICS OF IMPLIED VOLATILITY IN LOCAL VOLATILITY MODELS , 2009 .

[13]  Ananth Madhavan,et al.  The Dynamics of Leveraged and Inverse-Exchange Traded Funds , 2009 .

[14]  grant Atlas Anr Small time expansions for transition probabilities of some Lévy processes , 2009 .

[15]  Marco Avellaneda,et al.  Path-Dependence of Leveraged ETF Returns , 2009, SIAM J. Financial Math..

[16]  C. Houdr'e,et al.  Small-time expansions of the distributions, densities, and option prices of stochastic volatility models with Lévy jumps , 2010, 1009.4211.

[17]  Antoine Jacquier,et al.  The Small-Time Smile and Term Structure of Implied Volatility under the Heston Model , 2012, SIAM J. Financial Math..

[18]  José E. Figueroa-López,et al.  The Small-Maturity Smile for Exponential Lévy Models , 2011, SIAM J. Financial Math..

[19]  Kun Gao,et al.  Asymptotics of implied volatility to arbitrary order , 2011, Finance Stochastics.

[20]  Andrea Pascucci,et al.  LEVERAGED ETF IMPLIED VOLATILITIES FROM ETF DYNAMICS , 2014, 1404.6792.

[21]  R. Sircar,et al.  Implied Volatility of Leveraged ETF Options , 2014 .

[22]  Cheng Ouyang,et al.  Small-time expansions for local jump-diffusion models , 2011, 1108.3386.

[23]  Ashish Jain,et al.  Consistent Pricing of Options on Leveraged ETFs , 2015, SIAM J. Financial Math..

[24]  Rama Cont,et al.  Forward equations for option prices in semimartingale models , 2010, Finance Stochastics.

[25]  Roger Lee,et al.  How Leverage Shifts and Scales a Volatility Skew: Asymptotics for Continuous and Jump Dynamics , 2015 .

[26]  Tim Leung,et al.  Leveraged Exchange-Traded Funds: Price Dynamics and Options Valuation , 2016 .

[27]  B. Øksendal,et al.  Applied Stochastic Control of Jump Diffusions , 2004, Universitext.