Hamilton and Jacobi come full circle: Jacobi algorithms for structured Hamiltonian eigenproblems

We develop Jacobi algorithms for solving the complete eigenproblem for Hamiltonian and skew-Hamiltonian matrices that are also symmetric or skew-symmetric. Based on the direct solution of 4×4, and in one case, 8×8 subproblems, these structure preserving algorithms produce symplectic orthogonal bases for the invariant subspaces associated with a matrix in any one of the four classes under consideration. The key step in the construction of the algorithms is a quaternion characterization of the 4×4 symplectic orthogonal group, and the subspaces of 4×4 Hamiltonian, skew-Hamiltonian, symmetric and skew-symmetric matrices. In addition to preserving structure, these algorithms are inherently parallelizable, numerically stable, and show asymptotic quadratic convergence.

[1]  A. Bunse-Gerstner An analysis of the HR algorithm for computing the eigenvalues of a matrix , 1981 .

[2]  William Rowan Hamilton Second Essay on a General Method in Dynamics. [Abstract] , 1830 .

[3]  Derek Hacon,et al.  Jacobi's method for skew-symmetric matrices , 1993 .

[4]  E. Rees Notes on Geometry , 1983 .

[5]  Haesun Park,et al.  Efficient Implementation of Jacobi Algorithms and Jacobi Sets on Distributed Memory Architectures , 1990, J. Parallel Distributed Comput..

[6]  J. Milnor,et al.  On the parallelizability of the spheres , 1958 .

[7]  P. J. Ebertein,et al.  A Jacobi-Like Method for the Automatic Computation of Eigenvalues and Eigenvectors of an Arbitrary Matrix , 1962 .

[8]  B. Eckmann Stetige Lösungen linearer Gleichungssysteme , 1942 .

[9]  J. R. Gabriel,et al.  The eigenvalue problem for Hermitian matrices with time reversal symmetry , 1984 .

[10]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[11]  J. Bunch The weak and strong stability of algorithms in numerical linear algebra , 1987 .

[12]  Garrett Birkhoff,et al.  A survey of modern algebra , 1942 .

[13]  Ueber die Reduction der Integration der partiellen Differentialgleichungen erster Ordnung zwischen irgend einer Zahl Variablen auf die Integration eines einzigen Systemes gewöhnlicher Differentialgleichungen. , 1837 .

[14]  A. S. Ramsey The Mathematical Papers of Sir William Rowan Hamilton , 1931, Nature.

[15]  G. Birkhoff,et al.  A survey of modern algebra , 1942 .

[16]  A. Sameh On Jacobi and Jacobi-I ike Algorithms for a Parallel Computer , 2010 .

[17]  Walter F. Mascarenhas,et al.  On the Convergence of the Jacobi Method for Arbitrary Orderings , 1995, SIAM J. Matrix Anal. Appl..

[18]  J. F. Adams,et al.  Algebraic Topology – A Student's Guide: Vector fields on spheres , 1962 .

[19]  Nicholas J. Higham,et al.  Structured Backward Error and Condition of Generalized Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[20]  G. Stewart A Jacobi-Like Algorithm for Computing the Schur Decomposition of a Nonhermitian Matrix , 1985 .

[21]  Niloufer Mackey,et al.  Hamilton and Jacobi Meet Again: Quaternions and the Eigenvalue Problem , 1995, SIAM J. Matrix Anal. Appl..

[22]  Arthur Cayley Collected Mathematical Papers , 1988 .

[23]  Patricia J. Eberlein,et al.  New Jacobi-Sets for Parallel Computations , 1993, Parallel Comput..

[24]  C. Loan A Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian Matrix , 1982 .

[25]  V. Mehrmann,et al.  A new method for computing the stable invariant subspace of a real Hamiltonian matrix , 1997 .

[26]  Thomas L. Hankins,et al.  Sir William Rowan Hamilton , 1980 .

[27]  Franklin T. Luk,et al.  On parallel Jacobi orderings , 1989 .

[28]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[29]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[30]  R. Byers A Hamiltonian-Jacobi algorithm , 1990 .

[31]  N. Mackey Quaternions and the eigenproblem: a new Jacobi algorithm and its convergence , 1995 .

[32]  R. Bellman,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[33]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[34]  Volker Mehrmann,et al.  Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .

[35]  J. Olsen,et al.  Solution of the large matrix equations which occur in response theory , 1988 .

[36]  Gene H. Golub,et al.  Matrix computations , 1983 .

[37]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[38]  Tammo tom Dieck,et al.  Representations of Compact Lie Groups , 1985 .

[39]  Angelika Bunse-Gerstner,et al.  A Jacobi-like method for solving algebraic Riccati equations on parallel computers , 1997, IEEE Trans. Autom. Control..

[40]  John C. Nash,et al.  A One-Sided Transformation Method for the Singular Value Decomposition and Algebraic Eigenproblem , 1975, Comput. J..

[41]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[42]  Herman H. Goldstine,et al.  A Procedure for the Diagonalization of Normal Matrices , 1959, JACM.

[43]  M. Paardekooper,et al.  An eigenvalue algorithm for skew-symmetric matrices , 1971 .

[44]  R. Hartwig,et al.  Products of EP elements in reflexive semigroups , 1976 .

[45]  Niloufer Mackey,et al.  Hamiltonian square roots of skew-Hamiltonian matrices , 1999 .

[46]  C. Loan,et al.  A Schur decomposition for Hamiltonian matrices , 1981 .

[47]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[48]  Michael G. Crowe,et al.  A History of Vector Analysis , 1969 .

[49]  M. Kervaire,et al.  NON-PARALLELIZABILITY OF THE n-SPHERE FOR n > 7. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[50]  R. Byers A Hamiltonian $QR$ Algorithm , 1986 .

[51]  P. Eberlein On one-sided Jacobi methods for parallel computation , 1987 .

[52]  C. Jacobi,et al.  C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .

[53]  B. Eckmann,et al.  TOPOLOGY, ALGEBRA, ANALYSIS: RELATIONS AND MISSING LINKS , 1999 .

[54]  Volker Mehrmann,et al.  A Chart of Numerical Methods for Structured Eigenvalue Problems , 1992, SIAM J. Matrix Anal. Appl..