Hamilton and Jacobi come full circle: Jacobi algorithms for structured Hamiltonian eigenproblems
暂无分享,去创建一个
Heike Faßbender | Niloufer Mackey | D. Steven Mackey | H. Faßbender | D. S. Mackey | N. Mackey | D. Mackey
[1] A. Bunse-Gerstner. An analysis of the HR algorithm for computing the eigenvalues of a matrix , 1981 .
[2] William Rowan Hamilton. Second Essay on a General Method in Dynamics. [Abstract] , 1830 .
[3] Derek Hacon,et al. Jacobi's method for skew-symmetric matrices , 1993 .
[4] E. Rees. Notes on Geometry , 1983 .
[5] Haesun Park,et al. Efficient Implementation of Jacobi Algorithms and Jacobi Sets on Distributed Memory Architectures , 1990, J. Parallel Distributed Comput..
[6] J. Milnor,et al. On the parallelizability of the spheres , 1958 .
[7] P. J. Ebertein,et al. A Jacobi-Like Method for the Automatic Computation of Eigenvalues and Eigenvectors of an Arbitrary Matrix , 1962 .
[8] B. Eckmann. Stetige Lösungen linearer Gleichungssysteme , 1942 .
[9] J. R. Gabriel,et al. The eigenvalue problem for Hermitian matrices with time reversal symmetry , 1984 .
[10] M. Marcus,et al. A Survey of Matrix Theory and Matrix Inequalities , 1965 .
[11] J. Bunch. The weak and strong stability of algorithms in numerical linear algebra , 1987 .
[12] Garrett Birkhoff,et al. A survey of modern algebra , 1942 .
[14] A. S. Ramsey. The Mathematical Papers of Sir William Rowan Hamilton , 1931, Nature.
[15] G. Birkhoff,et al. A survey of modern algebra , 1942 .
[16] A. Sameh. On Jacobi and Jacobi-I ike Algorithms for a Parallel Computer , 2010 .
[17] Walter F. Mascarenhas,et al. On the Convergence of the Jacobi Method for Arbitrary Orderings , 1995, SIAM J. Matrix Anal. Appl..
[18] J. F. Adams,et al. Algebraic Topology – A Student's Guide: Vector fields on spheres , 1962 .
[19] Nicholas J. Higham,et al. Structured Backward Error and Condition of Generalized Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..
[20] G. Stewart. A Jacobi-Like Algorithm for Computing the Schur Decomposition of a Nonhermitian Matrix , 1985 .
[21] Niloufer Mackey,et al. Hamilton and Jacobi Meet Again: Quaternions and the Eigenvalue Problem , 1995, SIAM J. Matrix Anal. Appl..
[22] Arthur Cayley. Collected Mathematical Papers , 1988 .
[23] Patricia J. Eberlein,et al. New Jacobi-Sets for Parallel Computations , 1993, Parallel Comput..
[24] C. Loan. A Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian Matrix , 1982 .
[25] V. Mehrmann,et al. A new method for computing the stable invariant subspace of a real Hamiltonian matrix , 1997 .
[26] Thomas L. Hankins,et al. Sir William Rowan Hamilton , 1980 .
[27] Franklin T. Luk,et al. On parallel Jacobi orderings , 1989 .
[28] Leiba Rodman,et al. Algebraic Riccati equations , 1995 .
[29] V. Mehrmann. The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .
[30] R. Byers. A Hamiltonian-Jacobi algorithm , 1990 .
[31] N. Mackey. Quaternions and the eigenproblem: a new Jacobi algorithm and its convergence , 1995 .
[32] R. Bellman,et al. A Survey of Matrix Theory and Matrix Inequalities , 1965 .
[33] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[34] Volker Mehrmann,et al. Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .
[35] J. Olsen,et al. Solution of the large matrix equations which occur in response theory , 1988 .
[36] Gene H. Golub,et al. Matrix computations , 1983 .
[37] A. Laub. A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.
[38] Tammo tom Dieck,et al. Representations of Compact Lie Groups , 1985 .
[39] Angelika Bunse-Gerstner,et al. A Jacobi-like method for solving algebraic Riccati equations on parallel computers , 1997, IEEE Trans. Autom. Control..
[40] John C. Nash,et al. A One-Sided Transformation Method for the Singular Value Decomposition and Algebraic Eigenproblem , 1975, Comput. J..
[41] V. Mehrmann,et al. A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .
[42] Herman H. Goldstine,et al. A Procedure for the Diagonalization of Normal Matrices , 1959, JACM.
[43] M. Paardekooper,et al. An eigenvalue algorithm for skew-symmetric matrices , 1971 .
[44] R. Hartwig,et al. Products of EP elements in reflexive semigroups , 1976 .
[45] Niloufer Mackey,et al. Hamiltonian square roots of skew-Hamiltonian matrices , 1999 .
[46] C. Loan,et al. A Schur decomposition for Hamiltonian matrices , 1981 .
[47] V. Mehrmann. The Autonomous Linear Quadratic Control Problem , 1991 .
[48] Michael G. Crowe,et al. A History of Vector Analysis , 1969 .
[49] M. Kervaire,et al. NON-PARALLELIZABILITY OF THE n-SPHERE FOR n > 7. , 1958, Proceedings of the National Academy of Sciences of the United States of America.
[50] R. Byers. A Hamiltonian $QR$ Algorithm , 1986 .
[51] P. Eberlein. On one-sided Jacobi methods for parallel computation , 1987 .
[52] C. Jacobi,et al. C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .
[53] B. Eckmann,et al. TOPOLOGY, ALGEBRA, ANALYSIS: RELATIONS AND MISSING LINKS , 1999 .
[54] Volker Mehrmann,et al. A Chart of Numerical Methods for Structured Eigenvalue Problems , 1992, SIAM J. Matrix Anal. Appl..