R‐vine models for spatial time series with an application to daily mean temperature
暂无分享,去创建一个
[1] Modelling Dependence in Space and Time with Vine Copulas , 2011 .
[2] T. J. Page. Multivariate Statistics: A Vector Space Approach , 1984 .
[3] H. Joe,et al. The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .
[4] Dorota Kurowicka,et al. Dependence Modeling: Vine Copula Handbook , 2010 .
[5] Edzer Pebesma,et al. The pair-copula construction for spatial data: a new approach to model spatial dependency , 2011 .
[6] K. Stahl,et al. Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density , 2006 .
[7] T. Bedford,et al. Vines: A new graphical model for dependent random variables , 2002 .
[8] Claudia Czado,et al. Pair-Copula Constructions of Multivariate Copulas , 2010 .
[9] Roger M. Cooke,et al. Uncertainty Analysis with High Dimensional Dependence Modelling: Kurowicka/Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .
[10] Fred Espen Benth,et al. A Spatial-temporal Model for Temperature with Seasonal Variance , 2007 .
[11] Gunky Kim,et al. Comparison of semiparametric and parametric methods for estimating copulas , 2007, Comput. Stat. Data Anal..
[12] Roger M. Cooke,et al. Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.
[13] Haavard Rue,et al. Spatial Modelling of Temperature and Humidity using Systems of Stochastic Partial Differential Equations , 2013, 1307.1402.
[14] Eike Christian Brechmann,et al. Selection of Vine Copulas , 2013 .
[15] Kjersti Aas,et al. Truncated regular vines in high dimensions , 2010 .
[16] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[17] A. Gelfand,et al. Handbook of spatial statistics , 2010 .
[18] A. Azzalini,et al. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.
[19] R. Fisher. FREQUENCY DISTRIBUTION OF THE VALUES OF THE CORRELATION COEFFIENTS IN SAMPLES FROM AN INDEFINITELY LARGE POPU;ATION , 1915 .
[20] H. Joe. Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .
[21] Eike Christian Brechmann,et al. Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine , 2013 .
[22] A. Raftery,et al. Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .
[23] A. Frigessi,et al. Pair-copula constructions of multiple dependence , 2009 .
[24] Claudia Czado,et al. Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..
[25] Collin Carbno,et al. Uncertainty Analysis With High Dimensional Dependence Modelling , 2007, Technometrics.
[26] C. Genest,et al. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .
[27] C. Genest,et al. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .
[28] LeRoy F. Simmons,et al. Time-series decomposition using the sinusoidal model , 1990 .