R‐vine models for spatial time series with an application to daily mean temperature

We introduce an extension of R-vine copula models to allow for spatial dependencies and model based prediction at unobserved locations. The proposed spatial R-vine model combines the flexibility of vine copulas with the classical geostatistical idea of modeling spatial dependencies using the distances between the variable locations. In particular, the model is able to capture non-Gaussian spatial dependencies. To develop and illustrate our approach, we consider daily mean temperature data observed at 54 monitoring stations in Germany. We identify relationships between the vine copula parameters and the station distances and exploit these in order to reduce the huge number of parameters needed to parametrize a 54-dimensional R-vine model fitted to the data. The new distance based model parametrization results in a distinct reduction in the number of parameters and makes parameter estimation and prediction at unobserved locations feasible. The prediction capabilities are validated using adequate scoring techniques, showing a better performance of the spatial R-vine copula model compared to a Gaussian spatial model.

[1]  Modelling Dependence in Space and Time with Vine Copulas , 2011 .

[2]  T. J. Page Multivariate Statistics: A Vector Space Approach , 1984 .

[3]  H. Joe,et al.  The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .

[4]  Dorota Kurowicka,et al.  Dependence Modeling: Vine Copula Handbook , 2010 .

[5]  Edzer Pebesma,et al.  The pair-copula construction for spatial data: a new approach to model spatial dependency , 2011 .

[6]  K. Stahl,et al.  Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density , 2006 .

[7]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[8]  Claudia Czado,et al.  Pair-Copula Constructions of Multivariate Copulas , 2010 .

[9]  Roger M. Cooke,et al.  Uncertainty Analysis with High Dimensional Dependence Modelling: Kurowicka/Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .

[10]  Fred Espen Benth,et al.  A Spatial-temporal Model for Temperature with Seasonal Variance , 2007 .

[11]  Gunky Kim,et al.  Comparison of semiparametric and parametric methods for estimating copulas , 2007, Comput. Stat. Data Anal..

[12]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[13]  Haavard Rue,et al.  Spatial Modelling of Temperature and Humidity using Systems of Stochastic Partial Differential Equations , 2013, 1307.1402.

[14]  Eike Christian Brechmann,et al.  Selection of Vine Copulas , 2013 .

[15]  Kjersti Aas,et al.  Truncated regular vines in high dimensions , 2010 .

[16]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[17]  A. Gelfand,et al.  Handbook of spatial statistics , 2010 .

[18]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[19]  R. Fisher FREQUENCY DISTRIBUTION OF THE VALUES OF THE CORRELATION COEFFIENTS IN SAMPLES FROM AN INDEFINITELY LARGE POPU;ATION , 1915 .

[20]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[21]  Eike Christian Brechmann,et al.  Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine , 2013 .

[22]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[23]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[24]  Claudia Czado,et al.  Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..

[25]  Collin Carbno,et al.  Uncertainty Analysis With High Dimensional Dependence Modelling , 2007, Technometrics.

[26]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[27]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[28]  LeRoy F. Simmons,et al.  Time-series decomposition using the sinusoidal model , 1990 .