Enhanced particle method with stress point integration for simulation of incompressible fluid-nonlinear elastic structure interaction

[1]  Hitoshi GOTOH,et al.  Computational wave dynamics for innovative design of coastal structures , 2017, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[2]  B. Langrand,et al.  Coupled fluid-structure computational methods for aircraft ditching simulations , 2017 .

[3]  David Le Touzé,et al.  An efficient FSI coupling strategy between Smoothed Particle Hydrodynamics and Finite Element methods , 2017, Comput. Phys. Commun..

[4]  Nikolaus A. Adams,et al.  A generalized transport-velocity formulation for smoothed particle hydrodynamics , 2017, J. Comput. Phys..

[5]  A. Colagrossi,et al.  SPH energy conservation for fluid–solid interactions , 2017 .

[6]  A. Colagrossi,et al.  On the filtering of acoustic components in weakly-compressible SPH simulations , 2017 .

[7]  T. Rabczuk,et al.  Dual-Support Smoothed Particle Hydrodynamics for Elastic Mechanics , 2017, 1703.07209.

[8]  Hitoshi Gotoh,et al.  Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context , 2017, J. Comput. Phys..

[9]  Abbas Khayyer,et al.  Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming , 2017 .

[10]  Nicolas G. Wright,et al.  A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure , 2016 .

[11]  Mostafa Safdari Shadloo,et al.  Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges , 2016 .

[12]  Hua Liu,et al.  Two-phase SPH simulation of fluid–structure interactions , 2016 .

[13]  Salvatore Marrone,et al.  Detection of Lagrangian Coherent Structures in the SPH framework , 2016 .

[14]  Hitoshi Gotoh,et al.  Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid–structure interaction analysis method , 2016 .

[15]  Hitoshi Gotoh,et al.  Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering , 2016 .

[16]  Kamal Djidjeli,et al.  Coupled MPS-modal superposition method for 2D nonlinear fluid-structure interaction problems with free surface , 2016 .

[17]  D. Violeau,et al.  Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future , 2016 .

[18]  Jean-Christophe Marongiu,et al.  A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion , 2015 .

[19]  P. Temarel,et al.  Slamming impact loads on high-speed craft sections using two-dimensional modelling , 2015 .

[20]  Zhe Li,et al.  Coupling of SPH-ALE method and finite element method for transient fluid–structure interaction , 2014 .

[21]  Hitoshi Gotoh,et al.  Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems , 2014 .

[22]  K. Paik,et al.  Fluid–structure interaction for an elastic structure interacting with free surface in a rolling tank , 2014 .

[23]  Sheng-Wei Chi,et al.  Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems , 2014, CPM 2014.

[24]  Thomas R. Allen,et al.  Experimental hydroelastic characterization of slamming loaded marine panels , 2013 .

[25]  Furen Ming,et al.  Coupled SPHS–BEM method for transient fluid–structure interaction and applications in underwater impacts , 2013 .

[26]  Abbas Khayyer,et al.  A short note on Dynamic Stabilization of Moving Particle Semi-implicit method , 2013 .

[27]  Jiun-Shyan Chen,et al.  An arbitrary order variationally consistent integration for Galerkin meshfree methods , 2013 .

[28]  Vincent Faucher,et al.  SPH modeling of fluid–solid interaction for dynamic failure analysis of fluid-filled thin shells , 2013 .

[29]  P. Randles,et al.  A quasi‐static dual particle method for solids based on dual particle dynamics , 2013 .

[30]  Thomas R. Allen Mechanics of Flexible Composite Hull Panels Subjected to Water Impacts , 2013 .

[31]  Leigh McCue,et al.  Free-surface flow interactions with deformable structures using an SPH–FEM model , 2012 .

[32]  P. Randles,et al.  Dynamic failure simulation of quasi‐brittle material in dual particle dynamics , 2012 .

[33]  Damien Violeau,et al.  Fluid Mechanics and the SPH Method: Theory and Applications , 2012 .

[34]  Adnan Eghtesad,et al.  A new fluid–solid interface algorithm for simulating fluid structure problems in FGM plates , 2012 .

[35]  Hitoshi Gotoh,et al.  Enhancement of stability and accuracy of the moving particle semi-implicit method , 2011, J. Comput. Phys..

[36]  Seiichi Koshizuka,et al.  Current Achievements and Future Perspectives on Particle Simulation Technologies for Fluid Dynamics and Heat Transfer , 2011 .

[37]  P. M. Guilcher,et al.  Simulations of Hydro-Elastic Impacts Using a Parallel SPH Model , 2010 .

[38]  Bertrand Alessandrini,et al.  Violent Fluid-Structure Interaction simulations using a coupled SPH/FEM method , 2010 .

[39]  Abbas Khayyer,et al.  A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method , 2010 .

[40]  Krish Thiagarajan,et al.  An SPH projection method for simulating fluid-hypoelastic structure interaction , 2009 .

[41]  Abbas Khayyer,et al.  Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure , 2009 .

[42]  Ted Belytschko,et al.  Immersed particle method for fluid–structure interaction , 2009 .

[43]  E. Oñate,et al.  Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM , 2008 .

[44]  C. Antoci,et al.  Numerical simulation of fluid-structure interaction by SPH , 2007 .

[45]  Seiichi Koshizuka,et al.  Fluid-shell structure interaction analysis by coupled particle and finite element method , 2007 .

[46]  Antonio Huerta,et al.  Stabilized updated Lagrangian corrected SPH for explicit dynamic problems , 2007 .

[47]  M. Puso,et al.  Strain Smoothing for Stabilization and Regularization of Galerkin Meshfree Methods , 2007 .

[48]  Hitoshi Gotoh,et al.  Key issues in the particle method for computation of wave breaking , 2006 .

[49]  Ted Belytschko,et al.  Material stability analysis of particle methods , 2005, Adv. Comput. Math..

[50]  P. W. Randles,et al.  Boundary conditions for a dual particle method , 2005 .

[51]  Hitoshi Gotoh,et al.  Turbulence particle models for tracking free surfaces , 2005 .

[52]  S. Koshizuka,et al.  Dynamic Analysis of Elastic Solids by MPS Method , 2005 .

[53]  Sivakumar Kulasegaram,et al.  Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems , 2004 .

[54]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[55]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[56]  C. T. Dyka,et al.  Stability of DPD and SPH , 2003 .

[57]  Javier Bonet,et al.  A simplified approach to enhance the performance of smooth particle hydrodynamics methods , 2002, Appl. Math. Comput..

[58]  Ted Belytschko,et al.  Stability Analysis of Particle Methods with Corrected Derivatives , 2002 .

[59]  Sivakumar Kulasegaram,et al.  Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods , 2001 .

[60]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[61]  Hitoshi Gotoh,et al.  Sub-particle-scale turbulence model for the MPS method , 2001 .

[62]  P. W. Randles,et al.  Normalized SPH with stress points , 2000 .

[63]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[64]  Rade Vignjevic,et al.  A treatment of zero-energy modes in the smoothed particle hydrodynamics method , 2000 .

[65]  J. Bonet,et al.  Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations , 1999 .

[66]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[67]  T. Belytschko,et al.  Consistent pseudo-derivatives in meshless methods , 1997 .

[68]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[69]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[70]  R. P. Ingel,et al.  An approach for tension instability in smoothed particle hydrodynamics (SPH) , 1995 .

[71]  S. Attaway,et al.  Smoothed particle hydrodynamics stability analysis , 1995 .

[72]  R. P. Ingel,et al.  Addressing Tension Instability in SPH Methods. , 1994 .

[73]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .