A possible involvement of cya gene in the synthesis of cyclic guanosine 3′:5′-monophosphate in E. coli

[1]  S. Roseman,et al.  The bacterial phosphoenolpyruvate: sugar phosphotransferase system. , 1976, Ciba Foundation symposium.

[2]  I. Pastan,et al.  Cyclic adenosine 5'-monophosphate in Escherichia coli. , 1976, Bacteriological reviews.

[3]  M. Saier,et al.  Effects of crp mutations on adenosine 3',5'-monophosphate metabolism in Salmonella typhimurium , 1976, Journal of bacteriology.

[4]  W. Epstein,et al.  Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coli. , 1976, The Journal of biological chemistry.

[5]  M. Saier,et al.  Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the enzymes II of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli. , 1976, The Journal of biological chemistry.

[6]  Y. Kaziro Accumulation of cyclic guanosine 3':5'-monophosphate in the culture medium of growing cells of Escherichia coli. , 1976, Biochemical and biophysical research communications.

[7]  A. Peterkofsky,et al.  Diverse directional changes of cGMP relative to cAMP in E. coli. , 1975, Biochemical and biophysical research communications.

[8]  M. Nirenberg,et al.  Receptor-mediated shifts in cGMP and cAMP levels in neuroblastoma cells. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[9]  I. Pastan,et al.  Guanylate cyclase in Escherichia coli. Purification and properties. , 1975, The Journal of biological chemistry.

[10]  P. Rudland,et al.  Initiation of cell proliferation in cultured mouse fibroblasts by prostaglandin F2alpha. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[11]  K. Arai,et al.  A novel method for the determination of guanosine 3':5'-cyclic monophosphate (cyclic GMP). , 1975, Biochemical and biophysical research communications.

[12]  Takeshi Yokota,et al.  Adenosine 3′,5′-Cyclic Monophosphate-Deficient Mutants of Vibrio cholerae , 1974, Journal of bacteriology.

[13]  D. Gospodarowicz,et al.  Activation of guanyl cyclase and intracellular cyclic GMP by fibroblast growth factor , 1974, Nature.

[14]  R. Bernlohr,et al.  Cyclic guanosine 3':5'-monophosphate in Escherichia coli and Bacillus lichenformis. , 1974, The Journal of biological chemistry.

[15]  O. Hayaishi,et al.  Adenylate cyclase from Brevibacterium liquefaciens. I. Purification, crystallization, and some properties. , 1974, The Journal of biological chemistry.

[16]  G. Chaloner-Larsson,et al.  Abnormally high rate of cyclic AMP excretion from an Escherichia coli mutant deficient in cyclic AMP receptor protein. , 1974, Biochemical and biophysical research communications.

[17]  P. Rudland,et al.  Possible involvement of cyclic GMP in growth control of cultured mouse cells , 1974, Nature.

[18]  L. D. Nielsen,et al.  Cyclic 3′,5′-Adenosine Monophosphate Phosphodiesterase of Escherichia coli , 1973, Journal of bacteriology.

[19]  J. Beckwith,et al.  Genetic Characterization of Mutations Which Affect Catabolite-Sensitive Operons in Escherichia coli, Including Deletions of the Gene for Adenyl Cyclase , 1973, Journal of bacteriology.

[20]  J. Hadden,et al.  Guanosine 3':5'-cyclic monophosphate: a possible intracellular mediator of mitogenic influences in lymphocytes. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Tao,et al.  Some properties of Escherichia coli adenyl cyclase. , 1970, Archives of biochemistry and biophysics.

[22]  A. Gilman A protein binding assay for adenosine 3':5'-cyclic monophosphate. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Yokota,et al.  Requirement of Adenosine 3′, 5′-Cyclic Phosphate for Flagella Formation in Escherichia coli and Salmonella typhimurium , 1970, Journal of bacteriology.

[24]  W. George,et al.  Elevation of guanosine 3',5'-cyclic phosphate in rat heart after perfusion with acetylcholine. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[25]  I. Pastan,et al.  Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[26]  I. Pastan,et al.  Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase deficient mutant of Escherichia coli. , 1969, Biochemical and biophysical research communications.

[27]  J. Janeček,et al.  The enzymic degradation of 3',5' cyclic AMP in strains of E. Coli sensitive and resistant to catobolite repression. , 1969, Biochemical and biophysical research communications.

[28]  J. Friesen,et al.  Isolation of "relaxed" mutants of Escherichia coli , 1968, Journal of bacteriology.

[29]  J. Tomizawa,et al.  Transducing fragments in generalized transduction by phage P1. I. Molecular origin of the fragments. , 1966, Journal of molecular biology.

[30]  J. Tomizawa,et al.  Transducing fragments in generalized transduction by phage P1 , 1965 .

[31]  E. Sutherland,et al.  ADENOSINE 3',5'-PHOSPHATE IN ESCHERICHIA COLI. , 1965, The Journal of biological chemistry.

[32]  E. Lennox,et al.  Transduction of linked genetic characters of the host by bacteriophage P1. , 1955, Virology.

[33]  M. Haddox,et al.  Biologic regulation through opposing influences of cyclic GMP and cyclic AMP: the Yin Yang hypothesis. , 1975, Advances in cyclic nucleotide research.

[34]  S. Kuwahara Adenosine 3',5'-Cyclic Monophosphate-Deficient , 1974 .

[35]  O. Hayaishi,et al.  [22] Adenylate cyclase from Brevibacterium liquefaciens , 1974 .