GProX, a User-Friendly Platform for Bioinformatics Analysis and Visualization of Quantitative Proteomics Data*

Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)1. The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net.

[1]  Baris E. Suzek,et al.  The Universal Protein Resource (UniProt) in 2010 , 2009, Nucleic Acids Res..

[2]  Blagoy Blagoev,et al.  Quantitative analysis of HGF and EGF-dependent phosphotyrosine signaling networks. , 2010, Journal of proteome research.

[3]  Alexander Goesmann,et al.  Qupe - a Rich Internet Application to take a step forward in the analysis of mass spectrometry-based quantitative proteomics experiments , 2009, Bioinform..

[4]  María Martín,et al.  The Universal Protein Resource (UniProt) in 2010 , 2010 .

[5]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[6]  Matthias E. Futschik,et al.  Noise-robust Soft Clustering of Gene Expression Time-course Data , 2005, J. Bioinform. Comput. Biol..

[7]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[8]  P. Højrup,et al.  VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. , 2005, Journal of proteome research.

[9]  Natalie I. Tasman,et al.  A guided tour of the Trans‐Proteomic Pipeline , 2010, Proteomics.

[10]  Lokesh Kumar,et al.  Mfuzz: A software package for soft clustering of microarray data , 2007, Bioinformation.

[11]  Jens Nielsen,et al.  Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression saccharomyces cerevisiae strains: the comparison of two quantitative methods. , 2008, Journal of proteome research.

[12]  Mudita Singhal,et al.  Enabling high-throughput data management for systems biology: The Bioinformatics Resource Manager , 2007, Bioinform..

[13]  Wei Yan,et al.  Prequips - an extensible software platform for integration, visualization and analysis of LC-MS/MS proteomics data , 2009, Bioinform..

[14]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[15]  Bart De Moor,et al.  BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis , 2005, Bioinform..

[16]  Pooja Mittal,et al.  A novel signaling pathway impact analysis , 2009, Bioinform..

[17]  W. Liang,et al.  TM4 microarray software suite. , 2006, Methods in enzymology.

[18]  E. Birney,et al.  The International Protein Index: An integrated database for proteomics experiments , 2004, Proteomics.

[19]  M. Mann,et al.  Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast , 2008, Nature.

[20]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[21]  Joaquín Dopazo,et al.  The role of the environment in Parkinson's disease. , 1996, Nucleic Acids Res..

[22]  Albert J R Heck,et al.  Proteome-wide protein concentrations in the human heart. , 2010, Molecular bioSystems.

[23]  Kristoffer T G Rigbolt,et al.  Proteome-wide quantitation by SILAC. , 2010, Methods in molecular biology.

[24]  Navdeep Jaitly,et al.  DAnTE: a statistical tool for quantitative analysis of -omics data , 2008, Bioinform..

[25]  YanWei,et al.  Prequips—an extensible software platform for integration, visualization and analysis of LC-MS/MS proteomics data , 2009 .

[26]  M. Mann,et al.  Decoding signalling networks by mass spectrometry-based proteomics , 2010, Nature Reviews Molecular Cell Biology.

[27]  W. Liang,et al.  9) TM4 Microarray Software Suite , 2006 .

[28]  Lukas N. Mueller,et al.  Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted Proteomics , 2009, Cell.

[29]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[30]  Matthias Mann,et al.  High confidence determination of specific protein-protein interactions using quantitative mass spectrometry. , 2008, Current opinion in biotechnology.

[31]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[32]  M. Mann,et al.  System-Wide Temporal Characterization of the Proteome and Phosphoproteome of Human Embryonic Stem Cell Differentiation , 2011, Science Signaling.

[33]  David J. Reiss,et al.  The Gaggle: An open-source software system for integrating bioinformatics software and data sources , 2006, BMC Bioinformatics.

[34]  M. Mann,et al.  MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. , 2010, Journal of proteome research.

[35]  J. Coon,et al.  Value of using multiple proteases for large-scale mass spectrometry-based proteomics. , 2010, Journal of proteome research.

[36]  Masaru Tomita,et al.  One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the Escherichia coli proteome on a microarray scale. , 2010, Analytical chemistry.

[37]  Blagoy Blagoev,et al.  Mapping protein-protein interactions by quantitative proteomics. , 2010, Methods in molecular biology.

[38]  Madalina M. Drugan,et al.  StatQuant: a post-quantification analysis toolbox for improving quantitative mass spectrometry , 2009, Bioinform..

[39]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[40]  Jill P. Mesirov,et al.  GSEA-P: a desktop application for Gene Set Enrichment Analysis , 2007, Bioinform..

[41]  M. Mann,et al.  Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics , 2004, Nature Biotechnology.

[42]  J. Andersen,et al.  Ordered Organelle Degradation during Starvation-induced Autophagy*S , 2008, Molecular & Cellular Proteomics.

[43]  Matthias Mann,et al.  Bioinformatics analysis of mass spectrometry‐based proteomics data sets , 2009, FEBS letters.

[44]  Blagoy Blagoev,et al.  Receptor tyrosine kinase signaling: a view from quantitative proteomics. , 2009, Molecular bioSystems.

[45]  Susumu Goto,et al.  KEGG for representation and analysis of molecular networks involving diseases and drugs , 2009, Nucleic Acids Res..

[46]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.