Resilient Product Development - A New Approach for Controlling Uncertainty

By combining the established development method according to VDI guideline 2206 and the new approach of resilience, resilient product development makes it possible to control uncertainty in the early development phases. Based on the uncertainty that can occur in a classical product development process, such as uncertainty due to (i) the transition from function to building structure, (ii) interaction of modules and (iii) planning uncertainty, we first discuss the limits of existing product development guidelines and introduce the concept of resilience. The basic idea is that a resilient process can control uncertainty through the four resilience functions (i) monitoring, (ii) responding, (iii) learning and (iv) anticipating. We apply this new approach to the product development of the actuators of the active airspring of the TU Darmstadt. The active air spring can be used to increase driving comfort in a vehicle or, for example, to minimize kinetosis during autonomous driving.

[1]  E. Henriques,et al.  IDENTIFICATION , CLASSIFICATION AND MODELING UNCERTAINTY IN EARLY STAGE DESIGN OF MANUFACTURING SYSTEMS-A SURVEY , 2017 .

[2]  Peter F. Pelz,et al.  Global System Optimization and Scaling for Turbo Systems and Machines , 2014 .

[3]  Peter F. Pelz,et al.  Design and Realization of an Adjustable Fluid Powered Piston for an Active Air Spring , 2016 .

[4]  Rolf Isermann,et al.  Hardware-in-the-loop simulation for the design and testing of engine-control systems , 1998 .

[5]  R. Sonnenburg,et al.  Bestimmung komfortoptimaler Designparameter eines Luft-Feder-Dämpfers im Fahrzeugmodell Vergleich mit konventioneller hydraulischer Dämpfung , 2004 .

[6]  K. Ehrlenspiel,et al.  Integrierte Produktentwicklung - Denkabläufe, Methodeneinsatz, Zusammenarbeit , 2009 .

[7]  Robert L. Wears,et al.  Resilience Engineering: Concepts and Precepts , 2006, Quality and Safety in Health Care.

[8]  Peter F. Pelz,et al.  Modellbildung, Regelung und experimentelle Untersuchung einer aktiven Luftfederung in einer Hardware-in-the-Loop-Simulationsumgebung , 2017 .

[9]  Kristin Paetzold,et al.  Agilität als Alternative zu traditionellen Standards in der Entwicklung physischer Produkte: Chancen und Herausforderungen , 2016 .

[10]  Lea Rausch,et al.  New methods for new systems – How to find the techno-economically optimal hydrogen conversion system , 2017 .

[11]  Orit Hazzan,et al.  The Agile Manifesto , 2014 .

[12]  Kathleen V. Diegert,et al.  Error and uncertainty in modeling and simulation , 2002, Reliab. Eng. Syst. Saf..

[13]  P. John Clarkson,et al.  A Classification of Uncertainty for Early Product and System Design , 2007 .

[14]  Peter F. Pelz,et al.  Active Pneumatic Suspension for Future Autonomous Vehicles: Design, Prove of Concept and Hardware-in-the-Loop Simulations , 2018 .

[15]  Eric Lenz,et al.  Aktive Luftfederung – Modellierung, Regelung und Hardware-in-the-Loop-Experimente , 2018 .

[16]  Peter F. Pelz,et al.  Minimierung von Kinetose beim autonomen Fahren , 2018 .

[17]  T. Bedarff Grundlagen der Entwicklung und Untersuchung einer aktiven Luftfeder für Personenkraftwagen , 2017 .

[18]  R. Cooper Agile–Stage-Gate Hybrids , 2016 .

[19]  Wolfgang Gauchel,et al.  Automated Commissioning of Pneumatic Systems , 2018 .