Systematic Coarse Graining of 4-Cyano-4'-pentylbiphenyl

A coarse-grained model is derived for a liquid-crystal-forming molecule, 4-cyano-4′-pentylbiphenyl (5CB), from a detailed atomistic model using the iterative Boltzmann inversion (IBI) method in the isotropic phase at 315 K and 1 bar. The coarse-grained model consists of five “superatoms” (one for the cyano group, two for the aromatic rings in the biphenyl moiety, and two for the alkyl tail), which are categorized as three types. A modification of IBI, wherein only one of the effective intermolecular potentials (the one corresponding to the superatom pair whose intermolecular correlation function exhibits the highest deviation from the atomistic one) is updated at each iteration, proves to be necessary to achieve convergence. The coarse-grained model, which enables a savings of a factor of 35 in computational cost relative to atomistic simulation, is used to explore ordering into liquid-crystalline phases at lower temperatures. It is found to yield a first-order ordering transition at 288 K with small hysteresis and negligible system size effects. A detailed investigation in terms of various structural and dynamical measurements indicates that the ordered phase is of the smectic type rather than nematic, as observed experimentally. The ordering temperature can be brought close to the experimental value of 308.5 K through the simple rescaling of the intermolecular effective interaction potentials employed in the coarse-grained model. A nematic ordered phase can be obtained from the coarse-grained model by scaling up the head-head and tail-tail effective interaction potentials obtained by IBI.

[1]  Daan Frenkel,et al.  Hard convex body fluids , 1993 .

[2]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[3]  Hendrik Meyer,et al.  Coarse Graining of Short Polythylene Chains for Studying Polymer Crystallization. , 2006, Journal of chemical theory and computation.

[4]  Ping Sheng,et al.  Generalized hydrodynamic equations for nematic liquid crystals , 1998 .

[5]  I. Cacelli,et al.  Atomistic simulation of a nematogen using a force field derived from quantum chemical calculations. , 2005, The journal of physical chemistry. B.

[6]  Dirk Reith,et al.  Deriving effective mesoscale potentials from atomistic simulations , 2002, J. Comput. Chem..

[7]  P. Maffettone,et al.  Continuum theory for nematic liquid crystals with tensorial order , 2004 .

[8]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[9]  N. Abbott,et al.  Self-assembly of surfactants and phospholipids at interfaces between aqueous phases and thermotropic liquid crystals , 2005 .

[10]  N. Maurits,et al.  The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts , 1997 .

[11]  N. Abbott,et al.  Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals , 2003, Science.

[12]  Claudio Zannoni,et al.  Towards in silico liquid crystals. Realistic transition temperatures and physical properties for n-cyanobiphenyls via molecular dynamics simulations. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  D. Frenkel Computer simulation of hard-core models for liquid crystals , 1987 .

[14]  G. W. Gray,et al.  Physical Properties of Liquid Crystals , 2003 .

[15]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[16]  G. Prampolini,et al.  Modeling a liquid crystal dynamics by atomistic simulation with an ab initio derived force field. , 2006, The journal of physical chemistry. B.

[17]  H. Mori A Continued-Fraction Representation of the Time-Correlation Functions , 1965 .

[18]  G. R. Luckhurst,et al.  The Molecular physics of liquid crystals , 1979 .

[19]  Daan Frenkel,et al.  Molecular dynamics simulation using hard particles , 1989 .

[20]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[21]  G. Jackson,et al.  Liquid crystalline phase behavior in systems of hard-sphere chains , 1998 .

[22]  Qi Sun,et al.  Systematic coarse-graining of atomistic models for simulation of polymeric systems , 2005, Comput. Chem. Eng..

[23]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[24]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[25]  Dirk Reith,et al.  Mapping Atomistic to Coarse-Grained Polymer Models Using Automatic Simplex Optimization to Fit Structural Properties , 2001 .

[26]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[27]  Harold A. Scheraga,et al.  On the Use of Classical Statistical Mechanics in the Treatment of Polymer Chain Conformation , 1976 .

[28]  Juan J. de Pablo,et al.  ON THE SIMULATION OF VAPOR-LIQUID EQUILIBRIA FOR ALKANES , 1998 .

[29]  Valentina Tozzini,et al.  Coarse-grained models for proteins. , 2005, Current opinion in structural biology.

[30]  Florian Müller-Plathe,et al.  Mapping atomistic simulations to mesoscopic models: a systematic coarse-graining procedure for vinyl polymer chains. , 2005, The journal of physical chemistry. B.

[31]  M. P. Allen,et al.  Structure of trans-4-(trans-4-n-pentylcyclohexyl)cyclohexylcarbonitrile (CCH5) in the isotropic and nematic phases: a computer simulation study , 1992 .

[32]  Theodora Spyriouni,et al.  Coarse-Grained and Reverse-Mapped United-Atom Simulations of Long-Chain Atactic Polystyrene Melts: Structure, Thermodynamic Properties, Chain Conformation, and Entanglements , 2007 .

[33]  M. Wilson MOLECULAR MODELLING OF LIQUID CRYSTAL SYSTEMS : AN INTERNAL COORDINATE MONTE CARLO APPROACH , 1996 .

[34]  Robert Zwanzig,et al.  Memory Effects in Irreversible Thermodynamics , 1961 .

[35]  B. Berne Modification of the overlap potential to mimic a linear site-site potential , 1981 .

[36]  Dirk Reith,et al.  Coarse Graining of Nonbonded Inter-Particle Potentials Using Automatic Simplex Optimization to Fit Structural Properties , 2000 .

[37]  Alexander P. Lyubartsev,et al.  OSMOTIC AND ACTIVITY COEFFICIENTS FROM EFFECTIVE POTENTIALS FOR HYDRATED IONS , 1997 .

[38]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[39]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[40]  Alan K. Soper,et al.  Empirical potential Monte Carlo simulation of fluid structure , 1996 .

[41]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[42]  N. Abbott,et al.  Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[43]  A. Lyubartsev,et al.  Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  A. V. Zakharov,et al.  Theoretical investigations of rotational phenomena and dielectric properties in a nematic liquid crystal , 2001 .

[45]  G. J. Krüger Diffusion in thermotropic liquid crystals , 1982 .

[46]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[47]  R. Horn,et al.  Refractive indices and order parameters of two liquid crystals , 1978 .

[48]  Michael L. Klein,et al.  Coarse grain models and the computer simulation of soft materials , 2004 .

[49]  Krzysztof Moorthi,et al.  Coarse Grained End Bridging Monte Carlo Simulations of Poly(ethylene terephthalate) Melt , 2007 .

[50]  Roland Faller Automatic coarse graining of polymers , 2004 .

[51]  E. Vanden-Eijnden,et al.  Mori-Zwanzig formalism as a practical computational tool. , 2010, Faraday discussions.

[52]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[53]  G. Voth Coarse-Graining of Condensed Phase and Biomolecular Systems , 2008 .

[54]  A. Würflinger,et al.  PVT Measurements on 4-n-Pentyl-4´-Cyano-Biphenyl (5CB) and trans-4-(4´-Octyl-Cyclohexyl)-Benzonitrile (8PCH) up to 300 MPa , 1997 .

[55]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[56]  Shin-Tson Wu,et al.  Fundamentals of Liquid Crystal Devices , 2006 .

[57]  G. Prampolini,et al.  Computational study through atomistic potentials of a partial bilayer liquid crystal: structure and dynamics , 2009 .

[58]  R. Broucke,et al.  Algorithm 446: Ten subroutines for the manipulation of Chebyshev series , 1973 .

[59]  N. Clark,et al.  Microscopic structure and dynamics of a partial bilayer smectic liquid crystal. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[61]  Gregory A Voth,et al.  Multiscale coarse-graining and structural correlations: connections to liquid-state theory. , 2007, The journal of physical chemistry. B.

[62]  A. V. Zakharov,et al.  Structure and elastic properties of a nematic liquid crystal: A theoretical treatment and molecular dynamics simulation , 2001 .

[63]  Roland Faller,et al.  Automatic parameterization of force fields for liquids by simplex optimization , 1999, J. Comput. Chem..

[64]  David L. Cheung,et al.  Parametrization and validation of a force field for liquid-crystal forming molecules. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Florian Müller-Plathe,et al.  Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[66]  Kurt Kremer,et al.  The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions , 1988 .

[67]  Shekhar Garde,et al.  Do Inverse Monte Carlo Algorithms Yield Thermodynamically Consistent Interaction Potentials , 2006 .

[68]  R. L. Henderson A uniqueness theorem for fluid pair correlation functions , 1974 .

[69]  R. Eppenga,et al.  Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets , 1984 .

[70]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[71]  M. Whittle,et al.  Liquid crystal formation in a system of fused hard spheres , 1991 .

[72]  Kurt Kremer,et al.  Classical simulations from the atomistic to the mesoscale and back: coarse graining an liquid crystal. , 2008, Soft matter.

[73]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[74]  Thomas B Woolf,et al.  Insights into the molecular mechanism of membrane fusion from simulation: evidence for the association of splayed tails. , 2003, Physical review letters.

[75]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[76]  Gregory A Voth,et al.  Multiscale coarse graining of liquid-state systems. , 2005, The Journal of chemical physics.