Color perception in the intermediate periphery of the visual field.

Color perception changes across the visual field. It is best in the fovea and declines in the periphery. Sensitivity to red-green color variations declines more steeply toward the periphery than sensitivity to luminance or blue-yellow colors. It is thought that this decline is due to the increasing size of receptive fields of parvocellular retinal ganglion cells and the unselective or random contribution of L- and M-cones to the receptive field surround. In earlier psychophysical studies it has been found that L - M cone opponency becomes absent above 30 deg. However, physiological experiments in macaque monkeys have shown that midget ganglion cells exist in the intermediate zone of the peripheral retina (20-50 deg) that are strongly cone opponent. Here we explore this contradiction between physiological and psychophysical research, using stimuli of variable size at eccentricities of up to 50 deg. We found that chromatic detection gets worse with increasing eccentricity but is still possible even at large eccentricities. Our results show that chromatic detection at these eccentricities is mediated by cone-opponent mechanisms.

[1]  J. Moreland,et al.  Colour Perception with the Peripheral Retina , 1959 .

[2]  C. Kennard,et al.  Numerical study of short-term afterimages and associate properties in foveal vision , 2006, Vision Research.

[3]  Hans Irtel,et al.  Computing data for color-vision modeling , 1992 .

[4]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[5]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[6]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[7]  I. Abramov,et al.  Color appearance in the peripheral retina: effects of stimulus size. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[8]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[9]  J. Rovamo,et al.  Visual resolution, contrast sensitivity, and the cortical magnification factor , 2004, Experimental Brain Research.

[10]  Mary A. Johnson,et al.  Color vision in the peripheral retina. , 1986 .

[11]  T. Sejnowski,et al.  Representation of Color Stimuli in Awake Macaque Primary Visual Cortex , 2003, Neuron.

[12]  S Yamane,et al.  Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  D. Kiper,et al.  Chromatic properties of neurons in macaque area V2 , 1997, Visual Neuroscience.

[14]  Paul R. Martin,et al.  Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina , 1994, Vision Research.

[15]  K. Gegenfurtner,et al.  Chromatic discrimination of natural objects. , 2008, Journal of vision.

[16]  I J Murray,et al.  Cone opponency in the near peripheral retina , 2006, Visual Neuroscience.

[17]  Karl R Gegenfurtner,et al.  Higher level chromatic mechanisms for image segmentation. , 2006, Journal of vision.

[18]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[19]  Rhea T. Eskew,et al.  Peripheral chromatic sensitivity for flashes: A post-peceptoral red-green asymmetry , 1992, Vision Research.

[20]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[21]  David Whitaker,et al.  Functional evidence for cone‐specific connectivity in the human retina , 2005, The Journal of physiology.

[22]  Paul R. Martin,et al.  Specificity of M and L Cone Inputs to Receptive Fields in the Parvocellular Pathway: Random Wiring with Functional Bias , 2006, The Journal of Neuroscience.

[23]  C. Kennard,et al.  A numerical study of red–green colour opponent properties in the primate retina , 2007, The European journal of neuroscience.

[24]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  J. Krüger,et al.  Stimulus dependent colour specificity of monkey lateral geniculate neurones , 1977, Experimental Brain Research.

[26]  Naoya Yokoyama,et al.  Neural Coding of Color , 2004 .

[27]  Michael S. Landy,et al.  The Design of Chromatically Opponent Receptive Fields , 1991 .

[28]  D. Dacey The mosaic of midget ganglion cells in the human retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  J J Koenderink,et al.  Spectral sensitivity and wavelength discrimination of the human peripheral visual field. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[30]  K. Mullen,et al.  Does L/M Cone Opponency Disappear in Human Periphery? , 2005, Perception.

[31]  K. Mullen,et al.  Colour vision as a post-receptoral specialization of the central visual field , 1991, Vision Research.

[32]  I Abramov,et al.  Color vision in the peripheral retina. II. Hue and saturation. , 1977, Journal of the Optical Society of America.

[33]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[34]  G. Rand,et al.  Chromatic thresholds of sensation from center to periphery of the retina and their bearing on color theory: Part I. , 1919 .

[35]  K. Mullen,et al.  Losses in Peripheral Colour Sensitivity Predicted from “Hit and Miss” Post-receptoral Cone Connections , 1996, Vision Research.

[36]  Paul R. Martin,et al.  Chromatic Organization of Ganglion Cell Receptive Fields in the Peripheral Retina , 2005, The Journal of Neuroscience.

[37]  J. Moreland,et al.  Peripheral Colour Vision , 1972 .

[38]  Paul R. Martin,et al.  Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus , 1996, The Journal of comparative neurology.

[39]  A. Derrington Vision: Why do colours fade at the edges? , 2001, Nature.

[40]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[41]  G. Fowler,et al.  Rod influence on hue-scaling functions , 1998, Vision Research.

[42]  J. Verweij,et al.  L and M Cone Contributions to the Midget and Parasol Ganglion Cell Receptive Fields of Macaque Monkey Retina , 2004, The Journal of Neuroscience.

[43]  K. Mullen,et al.  Differential distributions of red–green and blue–yellow cone opponency across the visual field , 2002, Visual Neuroscience.

[44]  R. Shapley,et al.  Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[45]  Paul R. Martin,et al.  Chromatic sensitivity of ganglion cells in the peripheral primate retina , 2001, Nature.

[46]  J. Koenderink,et al.  Sensitivity to spatiotemporal colour contrast in the peripheral visual field , 1983, Vision Research.

[47]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[49]  B. Boycott,et al.  Cortical magnification factor and the ganglion cell density of the primate retina , 1989, Nature.

[50]  J. Krauskopf,et al.  Color discrimination and adaptation , 1992, Vision Research.

[51]  H. Komatsu Mechanisms of central color vision , 1998, Current Opinion in Neurobiology.

[52]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[53]  David R. Williams,et al.  The design of chromatically opponent receptive fields , 1991 .

[54]  J. Pokorny,et al.  Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. , 1990, Journal of the Optical Society of America. A, Optics and image science.