Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems

The aim of this paper is to propose a method for dealing with the problem of mesh deformation (or mesh evolution) in the context of free and moving boundary problems, in three space dimensions. The method consists in combining two different numerical parameterizations of domains: on the one hand, domains are equipped with a computational tetrahedral mesh, and on the other hand, they are represented as the negative subdomains of 'level set' functions. We then consistently switch from one description to the other, depending on their respective convenience with respect to the operations to be performed. Among other things, doing so implies to be able to get a computational mesh from an implicitly-defined domain. This in turns relies on an algorithm for handling three-dimensional domain remeshing (that is, remeshing at the same time both surface and volume parts of a given tetrahedral mesh). Applications are considered in the fields of mesh generation, shape optimization, and computational fluid dynamics.

[1]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[2]  Pascal Frey,et al.  A coupling strategy based on anisotropic mesh adaptation for solving two‐fluid flows , 2011 .

[3]  Michel Deville,et al.  Slow viscous flow , 1964 .

[4]  Frédéric de Gournay,et al.  Velocity Extension for the Level-set Method and Multiple Eigenvalues in Shape Optimization , 2006, SIAM J. Control. Optim..

[5]  Daniel R. Lynch,et al.  Unified approach to simulation on deforming elements with application to phase change problems , 1982 .

[6]  Pierre Alliez,et al.  Polygon Mesh Processing , 2010 .

[7]  李幼升,et al.  Ph , 1989 .

[8]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[9]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[10]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[11]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[12]  Jaroslav Haslinger Shape Optimization , 2009, Encyclopedia of Optimization.

[13]  Pascal Frey,et al.  A mesh evolution algorithm based on the level set method for geometry and topology optimization , 2013, Structural and Multidisciplinary Optimization.

[14]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[15]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[16]  Cécile Dobrzynski,et al.  Adaptation de Maillage anisotrope 3D et application à l'aéro-thermique des bâtiments , 2005 .

[17]  O. Pironneau Finite Element Methods for Fluids , 1990 .

[18]  Guy Barles,et al.  Remarks on a flame propagation model , 1985 .

[19]  Pere Brunet,et al.  Directional adaptive surface triangulation , 1999, Comput. Aided Geom. Des..

[20]  J. Strain Semi-Lagrangian Methods for Level Set Equations , 1999 .

[21]  P. George,et al.  Mesh Generation: Application to Finite Elements , 2007 .

[22]  C. Dapogny,et al.  Computation of the signed distance function to a discrete contour on adapted triangulation , 2012, Calcolo.

[23]  Antoine Henrot,et al.  Variation et optimisation de formes : une analyse géométrique , 2005 .

[24]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[25]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[26]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[27]  F. Murat,et al.  Sur le controle par un domaine géométrique , 1976 .

[28]  Jörg Peters,et al.  Curved PN triangles , 2001, I3D '01.

[29]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[30]  Charles Dapogny Shape optimization, level set methods on unstructured meshes and mesh evolution , 2013 .

[31]  G. Allaire,et al.  Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh , 2011 .

[32]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[33]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[34]  Jean-François Remacle,et al.  Anisotropic Mesh Gradation Control , 2004, IMR.

[35]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[36]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[37]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[38]  Houman Borouchaki,et al.  Surface meshing using a geometric error estimate , 2003 .

[39]  I. Holopainen Riemannian Geometry , 1927, Nature.

[40]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[41]  J. Crank Free and moving boundary problems , 1984 .

[42]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[43]  Pascal J. Frey,et al.  About Surface Remeshing , 2000, IMR.

[44]  C. Dobrzynski,et al.  Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations , 2008, IMR.

[45]  A. Edelman,et al.  Mesh generation for implicit geometries , 2005 .

[46]  P. George Improvements on Delaunay-based three-dimensional automatic mesh generator , 1997 .

[47]  Qiang Zhang,et al.  Three-Dimensional Front Tracking , 1998, SIAM J. Sci. Comput..

[48]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[49]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[50]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.