Effect of Pre-harvest Irradiation of UV-A and UV-B LED in Ginsenosides Content of Ginseng Sprouts

This study was conducted to determine the changes in ginsenosides content according to additional UV-A, and UV-B LED irradiation before harvesting the ginseng sprouts. One-year-old ginseng seedlings (n=100) were transplanted in a tray containing a ginseng medium. The ginseng sprouts were grown for 37 days at a temperature of 20°C (24h), a humidity of 70%, and an average light intensity of 80 μmol·m-2·s-1 (photoperiod; 24h) in a container-type plant factory. Ginseng sprouts were then transferred to a custom chamber equipped with UV-A (370 nm; 12.90 W·m-2) and UV-B (300 nm; 0.31 W·m-2) LEDs and treated for 3 days. Growth parameters and ginsenoside contents in shoot and root were conducted by harvesting on days 0 (control), 1, 2, and 3 of UV treatments, respectively. The growth parameters showed non-significant differences between the control and the UV treatments (wavelengths or the number of days). Ginsenoside contents of the shoot was highly improved by 186% in UV-A treatment compared to the control in 3 days of the treatment time. The ginsenoside contents of the roots was more improved in UV-A 1-day treatment and UV-B 3-day treatment, compared to the control by 171% and 160%, respectively. As a result of this experiment, it is thought that UV LED irradiation before harvesting can produce sprout ginseng with high ginsenoside contents in a plant factory. Additional key words : ginseng, ginsenoside, medicinal plant, plant factory, UV *Corresponding author: sonkh@gnu.ac.kr Received December 29, 2021; Revised January 10, 2022; Accepted January 12, 2022 Journal of Bio-Environment Control, Vol. 31, No. 1:28-34, January (2022) DOI https://doi.org/10.12791/KSBEC.2022.31.1.028 pISSN 1229-4675 eISSN 2765-3641 새싹 인삼의 수확 전 UV-A 및 -B LED의 조사에 의한 진세노사이드의 영향 생물환경조절학회지, 제31권 제1호 2022년 29 인삼 재배에 대한 생산자의 관심을 높이고 있다. 인공조명을 이용한 식물공장은 기존의 하우스와 작물을 생 산하는 온실과 달리 외부 환경의 변화에 영향을 받지 않고 환 경 재배 조건을 정밀하게 제어할 수 있다. 또한, 식물공장에서 는 연중 생산 계획이 가능하여 연간 대량으로 고품질 작물을 생산할 수 있어(Kozai, 2013), 새싹 인삼을 재배하는 것은 생 육과 ginsenoside 함량을 향상시켜 경제적 및 산업적 가치를 높일 수 있는 잠재력을 가지고 있다. 그러나 식물공장의 상업화를 위해서는 수확량과 품질의 향 상이 요구된다. 식물공장(Plant Factory)이란 온도, 습도, 광, 이산화탄 소 등의 환경을 제어 및 조절하여 채소 뿐만 아니라 부가가치가 높은 작물을 연중 계획 생산할 수 있는 시스템을 말한다(Cha 등, 2013). 따라서 식물공장에서 재배 작물의 파 이토케미칼 함량을 모니터링하는 것은 또 다른 중요한 연구 주제이다. 최근에는 UV-A(400-315nm), UV-B(315-280 nm), UV-C(280-100nm)로 구성된 자외선(UV) 파장대를 조사하는 것이 식물의 파이토케미칼의 생합성을 유도하는 연 구가 실시되고 있다(Gartia 등, 2003). 이러한 결과는 UV 처 리에 의해 식물의 파이토케미칼 측면에서 영양 품질을 향상시 킬 수 있음을 시사한다. 식물공장에서 새싹 인삼의 연구는 다양하게 수행되었다. 발 광다이오드(Light emitting diode, LED)를 이용한 다양한 광 질에 대한 변화에서 원적색 광원의 추가 조사는 사포닌과 ginsenoside의 함량을 증진시킨 결과가 보고되었다(Kim 등, 2020). 또한, 적색과 청색의 혼합 LED가 생육과 ginsenoside 에 긍정적인 영향(Jang 등, 2020)과 같은 식물공장 내 LED 광 원 조성에 대한 결과들이 보고되었다. 한편, UV 조사가 인삼 모상근의 생장 및 사포닌 생합성에 대한 연구에서 UV 처리기 간이 길어질수록 생장량의 감소와 ginsenoside 증진의 효과 를 나타냈다(In 등, 2006). 이처럼 실용적 측면을 고려한 수확 전/후 UV조사가 새싹 인삼의 ginsenoside에 미치는 영향에 대한 연구는 거의 없다. 따라서 식물공장에서 새싹 인삼의 품 질향상을 위한 수확 전 UV조사가 새싹 인삼의 ginsenoside 함 량 변화에 미치는 영향을 조사하고자 본 연구를 실시하였다.

[1]  M. Oh,et al.  Growth and Ginsenosides Content of Ginseng Sprouts According to LED-Based Light Quality Changes , 2020, Agronomy.

[2]  C. Chun,et al.  Physiological responses and ginsenoside production of Panax ginseng seedlings grown under various ratios of red to blue light-emitting diodes , 2020, Horticulture, Environment, and Biotechnology.

[3]  M. Oh,et al.  Short-Term Ultraviolet (UV)-A Light-Emitting Diode (LED) Radiation Improves Biomass and Bioactive Compounds of Kale , 2019, Front. Plant Sci..

[4]  Kee-Choon Park,et al.  Growth and Ginsenoside Content of One Year Old Ginseng Seedlings in Hydroponic Culture over a Range of Days after Transplanting , 2018, Korean Journal of Medicinal Crop Science.

[5]  I. Jang,et al.  Growth and Ginsenoside Content in Different Parts of Ginseng Sprouts Depending on Harvest Time , 2018, Korean Journal of Medicinal Crop Science.

[6]  Sang Mi Park,et al.  20S-Protopanaxadiol, an aglycosylated ginsenoside metabolite, induces hepatic stellate cell apoptosis through liver kinase B1–AMP-activated protein kinase activation , 2017, Journal of ginseng research.

[7]  J. Kim,et al.  Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases , 2016, Journal of ginseng research.

[8]  M. Cha,et al.  Growth of Leaf Lettuce as Affected by Light Quality of LED in Closed-Type Plant Factory System , 2013 .

[9]  Toyoki KOZAI,et al.  Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory , 2013, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[10]  Yong-Eui Choi,et al.  The involvement of β-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. , 2013, Plant & cell physiology.

[11]  Sang Hee Lee,et al.  Comparison of Ginsenoside and Phenolic Ingredient Contents in Hydroponically-cultivated Ginseng Leaves, Fruits, and Roots , 2012, Journal of ginseng research.

[12]  Y. Kim,et al.  Changes of Ginsenosides and Physiochemical Properties in Ginseng by New 9 Repetitive Steaming and Drying Process , 2012 .

[13]  K. Woo,et al.  Changes in ginsenosides and antioxidant activity of Korean ginseng (Panax ginseng C.A. Meyer) with Heating Temperature and Pressure , 2010 .

[14]  sung-taik lee,et al.  A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi-glycoside of PPD ginsenoside , 2009 .

[15]  K. Kang,et al.  Effect of compound K, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo. , 2009, Journal of agricultural and food chemistry.

[16]  Na Li,et al.  Protective effects of ginsenoside Rg2 against glutamate-induced neurotoxicity in PC12 cells. , 2007, Journal of ethnopharmacology.

[17]  M. Choo,et al.  Ginsenoside Rh1 Possesses Antiallergic and Anti-Inflammatory Activities , 2004, International Archives of Allergy and Immunology.

[18]  P. Joshi,et al.  UV-A Irradiation Guards the Photosynthetic Apparatus Against UV-B-Induced Damage , 2003, Photosynthetica.

[19]  Mun Yhung Jung,et al.  Free, esterified, and insoluble-bound phenolic acids in white and red Korean ginsengs (Panax ginseng C.A. Meyer) , 2002 .

[20]  M. Gershwin,et al.  Variability in commercial ginseng products: an analysis of 25 preparations. , 2001, The American journal of clinical nutrition.

[21]  Xiang-guo Li,et al.  Changes of Saponin Contents of Leaves, Stems and Flower-buds of Panax ginseng C. A. Meyer by Harvesting Days , 2009 .

[22]  Deok-Chun Yang,et al.  Effects of White Light and UV Irradiation on Growth and Saponin Production from Ginseng Hairy Root , 2006 .