Biometric information fusion for web user navigation and preferences analysis: An overview

Extracting knowledge of web users interests, navigational actions and preferences from web and biometric dataBiometric tools for measuring actual responses to the stimuli presented via websitesSurvey of biometric information fusion applied to the web usage mining field. Throughout the years having knowledge of Web users interests, navigational actions and preferences has gained importance due to the objectives of organizations and companies. Traditionally this field has been studied from the Web Mining perspective, particularly through the Web Usage Mining (WUM) concept, which consists of the application of machine learning techniques over data originated in the Web (Web data) for automatic extraction of behavioral patterns from Web users. WUM makes use of data sources that approximate users behavior, such as weblogs or clickstreams among others; however these sources imply a considerable degree of subjectivity to interpret. For that reason, the application of biometric tools with the possibility of measuring actual responses to the stimuli presented via websites has become of interest in this field. Instead of doing separate analyses, information fusion (IF) tries to improve results by developing efficient methods for transforming information from different sources into a single representation, which then could be used to guide biometric data fusion to complement the traditional WUM studies and obtain better results. This paper presents a survey of Biometric IF applied to the WUM field, by first defining WUM and its main applications, later explaining how the Biometric IF could be applied and finally reviewing several studies that apply this concept to WUM.

[1]  Susan T. Dumais,et al.  The good, the bad, and the random: an eye-tracking study of ad quality in web search , 2010, SIGIR.

[2]  Bing Liu,et al.  Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data , 2006, Data-Centric Systems and Applications.

[3]  D. S. Wooding,et al.  Fixation maps: quantifying eye-movement traces , 2002, ETRA.

[4]  Myra Spiliopoulou,et al.  Web usage mining for Web site evaluation , 2000, CACM.

[5]  Peter Svec,et al.  Data preprocessing evaluation for web log mining: reconstruction of activities of a web visitor , 2010, ICCS.

[6]  Claudia Picardi,et al.  User authentication through keystroke dynamics , 2002, TSEC.

[7]  Jaideep Srivastava,et al.  Automatic personalization based on Web usage mining , 2000, CACM.

[8]  Bing Pan,et al.  The determinants of web page viewing behavior: an eye-tracking study , 2004, ETRA.

[9]  Terumasa Aoki,et al.  Web Site Improvements Based on Representative Pages Identification , 2005, Australian Conference on Artificial Intelligence.

[10]  Thomas S. Tullis,et al.  Efficiency, Trust, and Visual Appeal: Usability Testing through Eye Tracking , 2010, 2010 43rd Hawaii International Conference on System Sciences.

[11]  Juan D. Velásquez,et al.  Combining eye-tracking technologies with web usage mining for identifying Website Keyobjects , 2013, Eng. Appl. Artif. Intell..

[12]  Joy Bose,et al.  EEG based detection of area of interest in a web page , 2015, 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

[13]  Juan D. Velásquez,et al.  Web User Click Intention Prediction by Using Pupil Dilation Analysis , 2015, 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT).

[14]  V. Palade,et al.  Adaptive Web Sites - A Knowledge Extraction from Web Data Approach , 2008, Frontiers in Artificial Intelligence and Applications.

[15]  Nor Saradatul Akmar Zulkifli,et al.  A Review : Fundamental and Applications of functional Magnetic Resonance Imaging ( fMRI ) on brain learning activities , 2012 .

[16]  Tommy Strandvall,et al.  Eye Tracking in Human-Computer Interaction and Usability Research , 2009, INTERACT.

[17]  A Värri,et al.  A simple format for exchange of digitized polygraphic recordings. , 1992, Electroencephalography and clinical neurophysiology.

[18]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[19]  Lakhmi C. Jain,et al.  Advanced Techniques in Web Intelligence -1 , 2010 .

[20]  Meredith Ringel Morris,et al.  What do you see when you're surfing?: using eye tracking to predict salient regions of web pages , 2009, CHI.

[21]  Ashutosh Kumar Singh,et al.  Web Structure Mining: Exploring Hyperlinks and Algorithms for Information Retrieval , 2010 .

[22]  Hendrik Blockeel,et al.  Web mining research: a survey , 2000, SKDD.

[23]  Ling Xia,et al.  Eye tracking and online search: Lessons learned and challenges ahead , 2008, J. Assoc. Inf. Sci. Technol..

[24]  Lior Rokach,et al.  Recommender Systems Handbook , 2010 .

[25]  MAGDALINI EIRINAKI,et al.  Web mining for web personalization , 2003, TOIT.

[26]  Narasimhan Sundararajan,et al.  Classification of Mental Tasks from Eeg Signals Using Extreme Learning Machine , 2006, Int. J. Neural Syst..

[27]  Edward Cutrell,et al.  What are you looking for?: an eye-tracking study of information usage in web search , 2007, CHI.

[28]  Juan D. Velásquez,et al.  Combining eye tracking and pupillary dilation analysis to identify Website Key Objects , 2015, Neurocomputing.

[29]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[30]  Jacek Gwizdka,et al.  Towards Inferring Web Page Relevance — An Eye-Tracking Study , 2015 .

[31]  I. Woungang,et al.  Combining Mouse and Keystroke Dynamics Biometrics for Risk-Based Authentication in Web Environments , 2012, 2012 Fourth International Conference on Digital Home.

[32]  Khalid Saeed,et al.  User Authentication with Keystroke Dynamics Using Fixed Text , 2009, 2009 International Conference on Biometrics and Kansei Engineering.

[33]  V. do Amaral,et al.  EEG signal classification in usability experiments , 2013, 2013 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC).

[34]  Mohammad Reza Meybodi,et al.  An efficient algorithm for web recommendation systems , 2009, 2009 IEEE/ACS International Conference on Computer Systems and Applications.

[35]  Georgios Paliouras,et al.  Web Usage Mining as a Tool for Personalization: A Survey , 2003, User Modeling and User-Adapted Interaction.

[36]  R. Krishnamoorthi,et al.  Identifying User Behavior by Analyzing Web Server Access Log File , 2009 .

[37]  Belur V. Dasarathy,et al.  Sensor fusion potential exploitation-innovative architectures and illustrative applications , 1997, Proc. IEEE.

[38]  Terumasa Aoki,et al.  Intelligent Web Site: Understanding the Visitor Behavior , 2004, KES.

[39]  Hyo Jung Kim,et al.  The Effect of Searching Versus Surfing on Cognitive and Emotional Responses to Online News , 2009, J. Media Psychol. Theor. Methods Appl..

[40]  Joann J. Ordille,et al.  Data integration: the teenage years , 2006, VLDB.

[41]  Jorge A. Balazs,et al.  Opinion Mining and Information Fusion: A survey , 2016, Inf. Fusion.

[42]  Jorge A. Balazs,et al.  Combining eye tracking, pupil dilation and EEG analysis for predicting web users click intention , 2017, Inf. Fusion.

[43]  Pascal Vasseur,et al.  Introduction to Multisensor Data Fusion , 2005, The Industrial Information Technology Handbook.

[44]  Shaghayegh Sahebi,et al.  Recommender Systems: Sources of Knowledge and Evaluation Metrics , 2013 .

[45]  Joseph H. Goldberg,et al.  Chapter 23 – Eye Tracking in Usability Evaluation: A Practitioner's Guide , 2003 .

[46]  Subbarao Kambhampati,et al.  Guest Editors' Introduction: Information Integration on the Web , 2003, IEEE Intelligent Systems.

[47]  Juan D. Velásquez,et al.  Eye Tracking and EEG Features for Salient Web Object Identification , 2015, BIH.

[48]  Franklin E White,et al.  Data Fusion Lexicon , 1991 .

[49]  Juan D. Velásquez,et al.  Characterizing Web User Visual Gaze Patterns: A Graph Theory Inspired Approach , 2014, Brain Informatics and Health.

[50]  Thorsten Joachims,et al.  Eye tracking and online search: Lessons learned and challenges ahead , 2008 .

[51]  Jaideep Srivastava,et al.  Data Preparation for Mining World Wide Web Browsing Patterns , 1999, Knowledge and Information Systems.

[52]  Alexandre N. Tuch,et al.  Location matters, especially for non-salient features-An eye-tracking study on the effects of web object placement on different types of websites , 2013, Int. J. Hum. Comput. Stud..

[53]  Juan D. Velásquez,et al.  Extracting significant Website Key Objects: A Semantic Web mining approach , 2011, Eng. Appl. Artif. Intell..

[54]  Jiyang Duan,et al.  Web page viewing behavior of users: an eye-tracking study , 2005, Proceedings of ICSSSM '05. 2005 International Conference on Services Systems and Services Management, 2005..

[55]  M. Aldekhail Application and Significance of Web Usage Mining in the 21st Century: A Literature Review , 2016 .

[56]  Klaus Opwis,et al.  Mental models for web objects: Where do users expect to find the most frequent objects in online shops, news portals, and company web pages? , 2010, Interact. Comput..

[57]  Yannis Manolopoulos,et al.  Indexing web access-logs for pattern queries , 2002, WIDM '02.

[58]  Tao Luo,et al.  Effective personalization based on association rule discovery from web usage data , 2001, WIDM '01.

[59]  Bamshad Mobasher,et al.  Intelligent Techniques for Web Personalization , 2005, Lecture Notes in Computer Science.

[60]  Lior Rokach,et al.  Introduction to Recommender Systems Handbook , 2011, Recommender Systems Handbook.

[61]  M. Teplan FUNDAMENTALS OF EEG MEASUREMENT , 2002 .

[62]  Gee Wah Ng,et al.  High-level Information Fusion: An Overview , 2013, J. Adv. Inf. Fusion.

[63]  Qiuzhen Wang,et al.  An eye-tracking study of website complexity from cognitive load perspective , 2014, Decis. Support Syst..

[64]  Jason J. Jung,et al.  Social big data: Recent achievements and new challenges , 2015, Information Fusion.

[65]  H. Jasper Report of the committee on methods of clinical examination in electroencephalography , 1958 .

[66]  Vijay V. Raghavan,et al.  Web information fusion: A review of the state of the art , 2008, Inf. Fusion.

[67]  K. Revett,et al.  Password secured sites - stepping forward with keystroke dynamics , 2005, International Conference on Next Generation Web Services Practices (NWeSP'05).

[68]  Xin Jin,et al.  A maximum entropy web recommendation system: combining collaborative and content features , 2005, KDD '05.

[69]  Fakhri Karray,et al.  Multisensor data fusion: A review of the state-of-the-art , 2013, Inf. Fusion.

[70]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[71]  Tasawar Hussain,et al.  Web usage mining: A survey on preprocessing of web log file , 2010, 2010 International Conference on Information and Emerging Technologies.

[72]  Thorsten Joachims,et al.  Accurately interpreting clickthrough data as implicit feedback , 2005, SIGIR '05.

[73]  Joy Bose,et al.  Attention Sensitive Web Browsing , 2016, COMPUTE.

[74]  Juan D. Velásquez,et al.  Design and Implementation of a Methodology for Identifying Website Keyobjects , 2009, KES.

[75]  Lucien Wald,et al.  A European proposal for terms of reference in data fusion , 1998 .

[76]  Brigitte Trousse,et al.  Advanced data preprocessing for intersites Web usage mining , 2004, IEEE Intelligent Systems.

[77]  Cheuk Y. Tang,et al.  Basic Principles of Functional MRI , 2018, Functional MRI.

[78]  Santosh Kumar Gupta,et al.  Web Content Mining Techniques: A Survey , 2012 .

[79]  Linden J. Ball,et al.  Eye tracking in HCI and usability research. , 2006 .

[80]  Pier Luca Lanzi,et al.  Mining interesting knowledge from weblogs: a survey , 2005, Data Knowl. Eng..

[81]  W. Dimpfel,et al.  Quantitative Objective Assessment of Websites by Neurocode-Tracking in Combination with Eye-Tracking , 2014 .

[82]  Oren Etzioni,et al.  Towards adaptive Web sites: Conceptual framework and case study , 1999, Artif. Intell..

[83]  Tim Bass,et al.  Intrusion detection systems and multisensor data fusion , 2000, CACM.

[84]  Fabio Roli,et al.  Information fusion for computer security: State of the art and open issues , 2009, Inf. Fusion.

[85]  Arnold W. M. Smeulders,et al.  Predicting Brain States from fMRI Data: Incremental Functional Principal Component Regression , 2007, NIPS.

[86]  Tom Ziemke,et al.  On the Definition of Information Fusion as a Field of Research , 2007 .

[87]  Juan D. Velásquez,et al.  Web site keywords: A methodology for improving gradually the web site text content , 2012, Intell. Data Anal..