Atomistic simulations of screw dislocations in bcc tungsten: From core structures and static properties to interaction with vacancies

[1]  Ligen Wang,et al.  High hydrogen retention in the sub-surfaces of tungsten plasma facing materials: A theoretical insight , 2016 .

[2]  G. Bonny,et al.  Interaction of hydrogen with dislocations in tungsten: An atomistic study , 2015 .

[3]  P. Gumbsch,et al.  Multiscale Simulation of Plasticity in bcc Metals , 2015 .

[4]  D. Rodney,et al.  Dislocation core reconstruction induced by carbon segregation in bcc iron , 2015 .

[5]  E. E. Zhurkin,et al.  Dislocation mechanism of deuterium retention in tungsten under plasma implantation , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  C. Becquart,et al.  A review of modelling and simulation of hydrogen behaviour in tungsten at different scales , 2014 .

[7]  G. Bonny,et al.  Many-body central force potentials for tungsten , 2014 .

[8]  R. Pippan,et al.  Core polarity of screw dislocations in Fe–Co alloys , 2014 .

[9]  Y. Zayachuk,et al.  Dislocations mediate hydrogen retention in tungsten , 2014 .

[10]  G. Lu,et al.  Hydrogen behaviors in molybdenum and tungsten and a generic vacancy trapping mechanism for H bubble formation , 2013 .

[11]  M. Marinica,et al.  Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W. , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  R. Stoller,et al.  The influence of transition metal solutes on the dislocation core structure and values of the Peierls stress and barrier in tungsten , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Brian D. Wirth,et al.  Interatomic potentials for simulation of He bubble formation in W , 2013 .

[14]  F. Liu,et al.  Anisotropic strain enhanced hydrogen solubility in bcc metals: the independence on the sign of strain. , 2012, Physical review letters.

[15]  B. Uberuaga,et al.  The interaction of a screw dislocation with point defects in bcc iron , 2012 .

[16]  C. Ambrosch-Draxl,et al.  Dislocation-core symmetry and slip planes in tungsten alloys: Ab initio calculations and microcantilever bending experiments , 2012 .

[17]  P. Gumbsch,et al.  Dislocation–vacancy interactions in tungsten , 2011 .

[18]  G. Lu,et al.  Modified analytical interatomic potential for a W–H system with defects , 2011 .

[19]  C. Ambrosch-Draxl,et al.  Effect of rhenium on the dislocation core structure in tungsten. , 2010, Physical review letters.

[20]  D. Caillard Kinetics of dislocations in pure Fe. Part II. In situ straining experiments at low temperature , 2010 .

[21]  G. Lu,et al.  Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: from dissolution and diffusion to a trapping mechanism , 2010 .

[22]  F. Liu,et al.  Vacancy trapping mechanism for hydrogen bubble formation in metal , 2009 .

[23]  K. Jacobsen,et al.  Density functional theory studies of screw dislocation core structures in bcc metals , 2003 .

[24]  H. V. Swygenhoven,et al.  Grain Boundaries and Dislocations , 2002 .

[25]  William A. Goddard,et al.  Molecular dynamics simulations of 1/2 a〈1 1 1〉 screw dislocation in Ta , 2001 .

[26]  C. Woodward,et al.  Ab-initio simulation of isolated screw dislocations in bcc Mo and Ta , 2001 .

[27]  Arias,et al.  Ab initio study of screw dislocations in Mo and ta: A new picture of plasticity in bcc transition metals , 1999, Physical review letters.

[28]  G. Ackland,et al.  An improved N-body semi-empirical model for body-centred cubic transition metals , 1987 .

[29]  F. Featherston,et al.  ELASTIC CONSTANTS OF TANTALUM, TUNGSTEN, AND MOLYBDENUM , 1963 .

[30]  R. Newman,et al.  The interaction of vacancies with dislocations , 1962 .